Groups whose non-normal subgroups are either nilpotent or minimal non-nilpotent

被引:0
|
作者
Dastborhan, Nasrin [1 ]
Mousavi, Hamid [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Dept Pure Math, Tabriz, Iran
关键词
Meta-Ni-Hamilponian; Para-Nil-Hmiltonian;
D O I
10.1007/s11587-024-00870-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Nil be the class of nilpotent groups and G be a group. We call G a meta-Nil-Hamiltonian group if any of its non-Nil subgroups is normal. Also, we call G a para-Nil-Hamiltonian group if G is a non-Nil group and every non-normal subgroup of G is either a Nil-group or a minimal non-Nil group. In this paper we investigate the class of finitely generated meta-Nil-Hamiltonian and para-Nil-Hamiltonian groups.
引用
收藏
页码:869 / 882
页数:14
相关论文
共 50 条
  • [31] Some Remarks on Groups with Maximum Condition on Non-nilpotent Subgroups
    Athhan, Sevgi
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (01) : 21 - 24
  • [32] Locally soluble-by-finite groups with the weak minimal condition on non-nilpotent subgroups
    Dixon, MR
    Evans, MJ
    Smith, H
    JOURNAL OF ALGEBRA, 2002, 249 (01) : 226 - 246
  • [33] MINIMAL MODELS FOR NON-NILPOTENT SPACES
    MEIER, W
    COMMENTARII MATHEMATICI HELVETICI, 1980, 55 (04) : 622 - 633
  • [34] Torsion-free groups isomorphic to all of their non-nilpotent subgroups
    Longobardi, P
    Maj, M
    Smith, H
    Wiegold, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 : 339 - 347
  • [35] Finite groups with given non-nilpotent maximal subgroups of prime index
    Yi, Xiaolan
    Jiang, Shiyang
    Kamornikov, S. F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (05)
  • [36] Locally graded groups with all non-nilpotent subgroups permutable, II
    Atlihan, Sevgi
    Dixon, Martyn R.
    Evans, Martin J.
    JOURNAL OF ALGEBRA, 2024, 641 : 530 - 533
  • [37] On Groups whose Non-Normal Subgroups are either Contranormal or Core-Free
    Kurdachenko, L. A.
    Pypka, A. A.
    Subbotin, I. Ya
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2020, 10 : 83 - 125
  • [38] The number of conjugacy classes of non-normal cyclic subgroups in nilpotent groups of odd order
    Li, SR
    JOURNAL OF GROUP THEORY, 1998, 1 (02) : 165 - 171
  • [39] Finite Nilpotent Groups Having Exactly Four Conjugacy Classes of Non-normal Subgroups
    Gong, Lu
    Cao, Hongping
    Chen, Guiyun
    ALGEBRA COLLOQUIUM, 2013, 20 (04) : 579 - 592
  • [40] Nilpotent covers and non-nilpotent subsets of finite groups of Lie type
    Azad, Azizollah
    Britnell, John R.
    Gill, Nick
    FORUM MATHEMATICUM, 2015, 27 (06) : 3745 - 3782