Finite non-cyclic nilpotent group whose number of subgroups is minimal

被引:2
|
作者
Meng, Wei [1 ]
Lu, Jiakuan [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Subgroup counting; Nilpotent groups; Sylow subgroups; CYCLIC SUBGROUPS;
D O I
10.1007/s11587-021-00584-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and s(G) denote the number of subgroups of G. Aivazidis and Muller proved that if G is a non-cyclic p-group of order p(lambda), then s(G) >= 6 whenever p(lambda) = 2(3); s(G) >= (p + 1)(lambda - 1) + 2 whenever p(lambda) not equal 2(3). In this paper, we generalize the results of Aivazidis and Muller on all finite non-cyclic nilpotent groups. Lower bounds on s(G) of non-cyclic nilpotent groups G are established.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 50 条
  • [1] Finite non-cyclic nilpotent group whose number of subgroups is minimal
    Wei Meng
    Jiakuan Lu
    Ricerche di Matematica, 2024, 73 : 191 - 198
  • [2] Finite non-cyclic p-groups whose number of subgroups is minimal
    Aivazidis, Stefanos
    Mueller, Thomas
    ARCHIV DER MATHEMATIK, 2020, 114 (01) : 13 - 17
  • [3] Finite non-cyclic p-groups whose number of subgroups is minimal
    Stefanos Aivazidis
    Thomas Müller
    Archiv der Mathematik, 2020, 114 : 13 - 17
  • [4] Lower Bounds on the Number of Cyclic Subgroups in Finite Non-Cyclic Nilpotent Groups
    Meng, Wei
    Lu, Jiakuan
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (01) : 93 - 102
  • [5] On the sum of non-cyclic subgroups order in a finite group
    Meng, Wei
    Lu, Jiakuan
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1084 - 1096
  • [6] Characterization of Finite Groups by the Number of Non-cyclic Non-TI-subgroups
    Jiangtao Shi
    Cui Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1457 - 1463
  • [7] Characterization of Finite Groups by the Number of Non-cyclic Non-TI-subgroups
    Shi, Jiangtao
    Zhang, Cui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1457 - 1463
  • [8] Finite Nilpotent Groups Whose Cyclic Subgroups are TI-Subgroups
    Alireza Abdollahi
    Hamid Mousavi
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1577 - 1589
  • [9] Finite Nilpotent Groups Whose Cyclic Subgroups are TI-Subgroups
    Abdollahi, Alireza
    Mousavi, Hamid
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) : 1577 - 1589
  • [10] The Number of Non-cyclic Sylow Subgroups of the Multiplicative Group Modulo n
    Pollack, Paul
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (01): : 204 - 215