Finite non-cyclic nilpotent group whose number of subgroups is minimal

被引:2
|
作者
Meng, Wei [1 ]
Lu, Jiakuan [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Subgroup counting; Nilpotent groups; Sylow subgroups; CYCLIC SUBGROUPS;
D O I
10.1007/s11587-021-00584-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and s(G) denote the number of subgroups of G. Aivazidis and Muller proved that if G is a non-cyclic p-group of order p(lambda), then s(G) >= 6 whenever p(lambda) = 2(3); s(G) >= (p + 1)(lambda - 1) + 2 whenever p(lambda) not equal 2(3). In this paper, we generalize the results of Aivazidis and Muller on all finite non-cyclic nilpotent groups. Lower bounds on s(G) of non-cyclic nilpotent groups G are established.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 50 条