EdgePose: An Edge Attention Network for 6D Pose Estimation

被引:0
|
作者
Feng, Qi [1 ]
Nong, Jian [1 ]
Liang, Yanyan [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Sch Comp Sci & Engn, Macau, Peoples R China
关键词
6D pose estimation; edge attention; feature fusion; deep learning; mixed reality;
D O I
10.3390/math12172607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a 6D pose estimation method that introduces an edge attention mechanism into the bidirectional feature fusion network. Our method constructs an end-to-end network model by sharing weights between the edge detection encoder and the encoder of the RGB branch in the feature fusion network, effectively utilizing edge information and improving the accuracy and robustness of 6D pose estimation. Experimental results show that this method achieves an accuracy of nearly 100% on the LineMOD dataset, and it also achieves state-of-the-art performance on the YCB-V dataset, especially on objects with significant edge information.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [32] CSA6D: Channel-Spatial Attention Networks for 6D Object Pose Estimation
    Chen, Tao
    Gu, Dongbing
    COGNITIVE COMPUTATION, 2022, 14 (02) : 702 - 713
  • [33] CSA6D: Channel-Spatial Attention Networks for 6D Object Pose Estimation
    Tao Chen
    Dongbing Gu
    Cognitive Computation, 2022, 14 : 702 - 713
  • [34] BDR6D: Bidirectional Deep Residual Fusion Network for 6D Pose Estimation
    Liu, Penglei
    Zhang, Qieshi
    Cheng, Jun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1793 - 1804
  • [35] DON6D: a decoupled one-stage network for 6D pose estimation
    Wang, Zheng
    Tu, Hangyao
    Qian, Yutong
    Zhao, Yanwei
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] ER-Pose: Learning edge representation for 6D pose estimation of texture-less objects
    Yang, Xu
    Li, Kunbo
    Wang, Jinge
    Fan, Xiumin
    NEUROCOMPUTING, 2023, 515 : 13 - 25
  • [37] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation
    He, Yisheng
    Huang, Haibin
    Fan, Haoqiang
    Chen, Qifeng
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3002 - 3012
  • [38] EFN6D: an efficient RGB-D fusion network for 6D pose estimation
    Wang Y.
    Jiang X.
    Fujita H.
    Fang Z.
    Qiu X.
    Chen J.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 75 - 88
  • [39] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [40] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35