Construction of an IFNAR1 knockout MDBK cell line using CRISPR/Cas9 and its effect on bovine virus replication

被引:1
|
作者
Geng, Yuanchen [1 ,2 ,3 ]
Jiang, Chuanwen [1 ,2 ,3 ]
Yang, Hao [1 ,2 ,3 ]
Xia, Qing [1 ,2 ]
Xu, Xiaowen [1 ,2 ,3 ]
Yang, Kaihui [1 ,2 ,3 ]
Yuan, Xinwei [1 ,2 ,3 ]
Chen, Jianguo [1 ,2 ,3 ]
Chen, Yingyu [1 ,2 ,3 ]
Chen, Xi [1 ,2 ,3 ]
Zhang, Lei [1 ,2 ,3 ]
Hu, Changmin [1 ,2 ,3 ]
Guo, Aizhen [1 ,2 ,3 ]
机构
[1] Huazhong Agr Univ, Coll Vet Med, State Key Lab Agr Microbiol, Hubei Hongshan Lab, Wuhan, Peoples R China
[2] Cooperat Innovat Ctr Sustainable Pig Prod, Hubei Int Sci & Technol Cooperat Base Vet Epidemio, Wuhan, Peoples R China
[3] Minist Agr & Rural Affair, Key Lab Dev Vet Diagnost Prod, Wuhan, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2024年 / 15卷
关键词
IFNAR1; BVDV; MDBK cell line; CRISPR/Cas9; IL13RA2; GENE-EXPRESSION; PATHWAY; PATTERN;
D O I
10.3389/fimmu.2024.1404649
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The type I interferon (IFN) pathway is important for eukaryotic cells to resist viral infection, as well as an impediment to efficient virus replication. Therefore, this study aims to create an IFNAR1 knockout (KO) Madin-Darby bovine kidney (MDBK) cell line using CRISPR/Cas9 and investigate its application and potential mechanism in increasing viral replication of bovines. The IFNAR1 KO cells showed increased titers of bovine viral diarrhea virus (BVDV) (1.5 log10), with bovine enterovirus and bovine parainfluenza virus type 3 (0.5-0.8 log10). RNA-seq revealed reduced expression of the genes related IFN-I pathways including IFNAR1, STAT3, IRF9, and SOCS3 in IFNAR1 KO cells compared with WT cells. In WT cells, 306 differentially expressed genes (DEGs) were identified between BVDV-infected and -uninfected cells. Of these, 128 up- and 178 down-regulated genes were mainly associated with growth cycle and biosynthesis, respectively. In IFNAR1 KO cells, 286 DEGs were identified, with 82 up-regulated genes were associated with signaling pathways, and 204 down-regulated genes. Further, 92 DEGs were overlapped between WT and IFNAR1 KO cells including ESM1, IL13RA2, and SLC25A34. Unique DEGs in WT cells were related to inflammation and immune regulation, whereas those unique in IFNAR1 KO cells involved in cell cycle regulation through pathways such as MAPK. Knocking down SLC25A34 and IL13RA2 in IFNAR1 KO cells increased BVDV replication by 0.3 log10 and 0.4 log10, respectively. Additionally, we constructed an IFNAR1/IFNAR2 double-knockout MDBK cell line, which further increased BVDV viral titers compared with IFNAR1 KO cells (0.6 log10). Overall, the IFNAR1 KO MDBK cell line can support better replication of bovine viruses and therefore provides a valuable tool for bovine virus research on viral pathogenesis and host innate immune response.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Generation of an NCS1 gene knockout human induced pluripotent stem cell line using CRISPR/Cas9
    Maierhof, Smilla K.
    Schinke, Christian
    Cernoch, Janine
    Hew, Lois
    Bruske, Laura Pauline
    Vallone, Valeria Fernandez
    Fischer, Kristin
    Stachelscheid, Harald
    Huehnchen, Petra
    Endres, Matthias
    Diecke, Sebastian
    Telugu, Narasimha Swamy
    Boehmerle, Wolfgang
    STEM CELL RESEARCH, 2023, 73
  • [12] Generation of a FTO gene knockout human embryonic stem cell line using CRISPR/Cas9 editing
    Wei, Cong
    Luo, Qian
    Wang, Binsheng
    Long, Yan
    Zhang, Meng
    Shan, Wei
    Yu, Xiaohong
    Xu, Yulin
    Qian, Pengxu
    Huang, He
    STEM CELL RESEARCH, 2021, 53
  • [13] Generating an MEIS1 homozygous knockout human embryonic stem cell line using the CRISPR/Cas9 system
    Zhang, Canwei
    Yu, Yankun
    Li, Fuxi
    Lan, Xihong
    Wang, Li
    STEM CELL RESEARCH, 2020, 49
  • [14] Generation of a MCPH1 knockout human embryonic stem cell line by CRISPR/Cas9 technology
    Wang, Zerui
    Cui, Yazhou
    Shan, Yongli
    Kang, Baoqiang
    Shi, Liang
    Geng, Kaiyue
    Han, Jinxiang
    STEM CELL RESEARCH, 2020, 49
  • [15] Generation of a TPM1 homozygous knockout embryonic stem cell line by CRISPR/Cas9 editing
    Ma, Shuhong
    Xu, Qi
    Bai, Rui
    Dong, Tao
    Peng, Zhiping
    Liu, Xujie
    STEM CELL RESEARCH, 2021, 55
  • [16] Generation of an Inducible Avp Knockout Mouse Line Using CRISPR/Cas9 and Cre/LoxP
    Khan, Shaza
    Chen, Lihe
    Khundmiri, Syed
    Chou, Chung-Lin
    Knepper, M. A.
    PHYSIOLOGY, 2024, 39
  • [17] Construction of TSC2 knockout cell line using CRISPR/Cas9 system and demonstration of its effects on NIH-3T3 cells
    Wang, Xu
    Zhao, Yang
    Wang, Zhan
    Liao, Zhangcheng
    Zhang, Yushi
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2022, 80 (04) : 681 - 687
  • [18] Construction of TSC2 knockout cell line using CRISPR/Cas9 system and demonstration of its effects on NIH-3T3 cells
    Xu Wang
    Yang Zhao
    Zhan Wang
    Zhangcheng Liao
    Yushi Zhang
    Cell Biochemistry and Biophysics, 2022, 80 : 681 - 687
  • [19] Generation of Rybp homozygous knockout murine ES cell line GIBHe001-A-1 by using CRISPR/Cas9 technology
    Liu, Zicong
    Yao, Mingze
    Yao, Hongjie
    Hu, Gongcheng
    Qin, Baoming
    STEM CELL RESEARCH, 2019, 41
  • [20] Generation of a TLR2 knockout human induced pluripotent stem cell line using CRISPR/Cas9
    Han, Hyeong-Jun
    Kim, Jung-Hyun
    STEM CELL RESEARCH, 2021, 57