Mathematical Analysis of Turbulent Flows Through Permeable Media

被引:0
|
作者
de Oliveira, Hermenegildo Borges [1 ,2 ]
机构
[1] Univ Algarve, FCT, Faro, Portugal
[2] Univ Lisbon, CMAFcIO, Lisbon, Portugal
来源
NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, PICNDEA 2022 | 2024年 / 7卷
关键词
KINETIC-ENERGY; VISCOUS-FLUID; MODEL; EQUATION; EXISTENCE; SYSTEM;
D O I
10.1007/978-3-031-53740-0_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we consider the one-equation k-epsilon model most used in the applications to describe turbulent flows through permeable media. The mathematical problem we study here is supplemented with no-slip boundary conditions and suitable initial conditions. For the associated boundary-value problem, we prove the existence of weak solutions for space dimensions 2 <= d <= 4. With respect to the original initial- and boundary-value problem, we prove the existence of suitable weak solutions in the space dimensions of physics interest.
引用
收藏
页码:235 / 257
页数:23
相关论文
共 50 条
  • [41] Flume Experiments on Turbulent Flows Across Gaps of Permeable and Impermeable Boundaries
    Fontan, S.
    Katul, G. G.
    Poggi, D.
    Manes, C.
    Ridolfi, L.
    BOUNDARY-LAYER METEOROLOGY, 2013, 147 (01) : 21 - 39
  • [42] A phenomenological model to describe turbulent friction in permeable-wall flows
    Manes, C.
    Ridolfi, L.
    Katul, G.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [43] Reynolds number dependence of turbulent flows over a highly permeable wall
    Kuwata, Y.
    Suga, K.
    JOURNAL OF FLUID MECHANICS, 2024, 981
  • [44] Flume Experiments on Turbulent Flows Across Gaps of Permeable and Impermeable Boundaries
    S. Fontan
    G. G. Katul
    D. Poggi
    C. Manes
    L. Ridolfi
    Boundary-Layer Meteorology, 2013, 147 : 21 - 39
  • [45] PRACTICAL APPLICATIONS OF MATHEMATICAL REPRESENTATION FOR TURBULENT RECIRCULATORY FLOWS
    SZEKELY, J
    ASAI, S
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1975, 15 (05) : 276 - 285
  • [46] Fundamentals of the double - decomposition concept for turbulent transport in permeable media
    De Lemos, MJS
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2005, 36 (10) : 586 - 593
  • [47] Scale estimation for turbulent flows in porous media
    Patil, Vishal A.
    Liburdy, James A.
    Chemical Engineering Science, 2015, 123 : 231 - 235
  • [48] Scale estimation for turbulent flows in porous media
    Patil, Vishal A.
    Liburdy, James A.
    CHEMICAL ENGINEERING SCIENCE, 2015, 123 : 231 - 235
  • [49] Turbulent Properties of Stationary Flows in Porous Media
    Falkinhoff, Florencia
    Ponomarenko, Alexandre
    Pierson, Jean-Lou
    Gamet, Lionel
    Volk, Romain
    Bourgoin, Mickael
    PHYSICAL REVIEW LETTERS, 2024, 132 (17)
  • [50] Mathematical framework for analysis of internal energy dynamics and spectral distribution in compressible turbulent flows
    Mittal, Ankita
    Girimaji, Sharath S.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (04):