Mathematical Analysis of Turbulent Flows Through Permeable Media

被引:0
|
作者
de Oliveira, Hermenegildo Borges [1 ,2 ]
机构
[1] Univ Algarve, FCT, Faro, Portugal
[2] Univ Lisbon, CMAFcIO, Lisbon, Portugal
来源
NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, PICNDEA 2022 | 2024年 / 7卷
关键词
KINETIC-ENERGY; VISCOUS-FLUID; MODEL; EQUATION; EXISTENCE; SYSTEM;
D O I
10.1007/978-3-031-53740-0_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we consider the one-equation k-epsilon model most used in the applications to describe turbulent flows through permeable media. The mathematical problem we study here is supplemented with no-slip boundary conditions and suitable initial conditions. For the associated boundary-value problem, we prove the existence of weak solutions for space dimensions 2 <= d <= 4. With respect to the original initial- and boundary-value problem, we prove the existence of suitable weak solutions in the space dimensions of physics interest.
引用
收藏
页码:235 / 257
页数:23
相关论文
共 50 条
  • [21] Renormalization Group Analysis of the Stability of Turbulent Flows in Porous Media
    Avramenko A.A.
    Dmitrenko N.P.
    Tyrinov A.I.
    Dmitrenko, N.P. (natdmitrenko@i.ua), 1600, Springer Science and Business Media, LLC (89): : 592 - 605
  • [22] Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows
    Guermond, JL
    Prudhomme, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (06): : 893 - 908
  • [23] Mathematical Analysis of SAR Imaging through a Turbulent Ionosphere
    Gilman, M.
    Tsynkov, S.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2017, 1895
  • [24] SCALING IMMISCIBLE FLOW THROUGH PERMEABLE MEDIA BY INSPECTIONAL ANALYSIS
    SHOOK, M
    LI, DC
    LAKE, LW
    IN SITU, 1992, 16 (04): : 311 - 349
  • [25] Phase transitions for laminar-turbulent flows in a pipeline or through porous media
    Corli, Andrea
    Fan, Haitao
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2013, 13 (02) : 151 - 181
  • [26] Improved SPH simulation of wave motions and turbulent flows through porous media
    Ren, Bing
    Wen, Hongjie
    Dong, Ping
    Wang, Yongxue
    COASTAL ENGINEERING, 2016, 107 : 14 - 27
  • [27] Mathematical Models of Swirling Turbulent Jet Flows
    Chernykh, G. G.
    Demenkov, A. G.
    Yakovenko, S. N.
    INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2018), 2018, 2027
  • [28] MATHEMATICAL AND PHYSICAL MODELING OF TURBULENT RECIRCULATING FLOWS
    SZEKELY, J
    DILAWARI, AH
    METZ, R
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1979, 10 (01): : 33 - 41
  • [29] Modeling Turbulent Flows in Porous Media
    Wood, Brian D.
    He, Xiaoliang
    Apte, Sourabh V.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 : 171 - 203
  • [30] GENERAL MATHEMATICAL STATEMENT OF TURBULENT RECIRCULATORY FLOWS
    SZEKELY, J
    ASAI, S
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1975, 15 (05) : 270 - 275