Mathematical Analysis of Turbulent Flows Through Permeable Media

被引:0
|
作者
de Oliveira, Hermenegildo Borges [1 ,2 ]
机构
[1] Univ Algarve, FCT, Faro, Portugal
[2] Univ Lisbon, CMAFcIO, Lisbon, Portugal
来源
NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, PICNDEA 2022 | 2024年 / 7卷
关键词
KINETIC-ENERGY; VISCOUS-FLUID; MODEL; EQUATION; EXISTENCE; SYSTEM;
D O I
10.1007/978-3-031-53740-0_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we consider the one-equation k-epsilon model most used in the applications to describe turbulent flows through permeable media. The mathematical problem we study here is supplemented with no-slip boundary conditions and suitable initial conditions. For the associated boundary-value problem, we prove the existence of weak solutions for space dimensions 2 <= d <= 4. With respect to the original initial- and boundary-value problem, we prove the existence of suitable weak solutions in the space dimensions of physics interest.
引用
收藏
页码:235 / 257
页数:23
相关论文
共 50 条