NOTIONS OF QUANTUM INDEPENDENCE NATURALLY ARISING FROM CLASSICAL PROBABILITY

被引:0
|
作者
Accardi, Luigi [1 ]
Lu, Yun Gang [2 ]
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, Rome, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how the basic notions of quantum independence, classical, tensor, monotone, free, Boolean (and in fact many more), naturally arise combining classical probability with the notion of Interacting Fock Spaces (IFS). In particular we discuss the Poisson central limit theorems associated to the various independences.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] CLASSICAL AND QUANTUM PROBABILITY FOR BIOLOGISTS -INTRODUCTION
    Khrennikov, Andrei.
    [J]. QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 179 - 192
  • [22] Classical limit of quantum Brownian probability
    Chanana, N
    Menon, VJ
    Singh, Y
    [J]. PHYSICAL REVIEW E, 1996, 53 (05): : 5477 - 5479
  • [23] Quantum mechanics and classical probability theory
    Manko, VI
    [J]. SYMMETRIES IN SCIENCE IX, 1997, : 225 - 242
  • [24] Probability Constraints on the Classical/Quantum Divide
    Kak, Subhash
    [J]. NEUROQUANTOLOGY, 2013, 11 (04) : 600 - 606
  • [25] ON SPREADING OF QUANTUM AND CLASSICAL PROBABILITY PACKETS
    MURAKHVER, YE
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 165 (03): : 526 - +
  • [26] Hybrid classical-quantum formulations ask for hybrid notions
    Barcelo, Carlos
    Carballo-Rubio, Raul
    Garay, Luis J.
    Gomez-Escalante, Ricardo
    [J]. PHYSICAL REVIEW A, 2012, 86 (04):
  • [27] CLASSICAL PROBABILITY-THEORY FROM A QUANTUM-MECHANICAL VIEWPOINT
    ROSSBONNEY, AA
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (11): : 1305 - 1305
  • [28] Fractal quantum probability distributions and the classical limit
    Ballentine, LE
    [J]. PHYSICS LETTERS A, 1999, 261 (3-4) : 145 - 149
  • [29] Quantum density of probability at the classical peculiar point
    Buonanno, L
    Renna, M
    Pavlotsky, IP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (11): : 1285 - 1291
  • [30] Classical versus quantum probability in sequential measurements
    Anastopoulos, Charis
    [J]. FOUNDATIONS OF PHYSICS, 2006, 36 (11) : 1601 - 1661