NOTIONS OF QUANTUM INDEPENDENCE NATURALLY ARISING FROM CLASSICAL PROBABILITY

被引:0
|
作者
Accardi, Luigi [1 ]
Lu, Yun Gang [2 ]
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, Rome, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how the basic notions of quantum independence, classical, tensor, monotone, free, Boolean (and in fact many more), naturally arise combining classical probability with the notion of Interacting Fock Spaces (IFS). In particular we discuss the Poisson central limit theorems associated to the various independences.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] RAINBOW EFFECT IN CLASSICAL AND QUANTUM PROBABILITY PACKETS
    BOSANAC, SD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (08): : 5732 - 5737
  • [32] Probability Description and Entropy of Classical and Quantum Systems
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    [J]. FOUNDATIONS OF PHYSICS, 2011, 41 (03) : 330 - 344
  • [33] Probability Vectors within the Classical and Quantum Frameworks
    Margarita A. Man’ko
    Vladimir I. Man’ko
    Giuseppe Marmo
    Alberto Simoni
    Franco Ventriglia
    [J]. Journal of Russian Laser Research, 2014, 35 : 79 - 92
  • [34] Geometrical structures for classical and quantum probability spaces
    Ciaglia, Florio Maria
    Ibort, Alberto
    Marmo, Giuseppe
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (08)
  • [35] Probability Description and Entropy of Classical and Quantum Systems
    Margarita A. Man’ko
    Vladimir I. Man’ko
    [J]. Foundations of Physics, 2011, 41 : 330 - 344
  • [36] Classical Versus Quantum Probability in Sequential Measurements
    Charis Anastopoulos
    [J]. Foundations of Physics, 2006, 36 : 1601 - 1661
  • [37] Track Label and Classical and Quantum Probability Densities
    Mallick, Mahendra
    Rubin, Steve
    Zhu, Yun
    [J]. 2022 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2022, : 118 - 123
  • [38] Quantum and classical probability distributions for arbitrary Hamiltonians
    Semay, Claude
    Ducobu, Ludovic
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2016, 37 (04)
  • [39] Probability distributions in classical and quantum elliptic billiards
    Gutiérrez-Vega, JC
    Chávez-Cerda, S
    Rodríguez-Dagnino, RM
    [J]. REVISTA MEXICANA DE FISICA, 2001, 47 (05) : 480 - 488
  • [40] Quantum and classical probability distributions for position and momentum
    Real, CC
    Muga, JG
    Brouard, S
    [J]. AMERICAN JOURNAL OF PHYSICS, 1997, 65 (02) : 157 - 158