Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity

被引:0
|
作者
Carufe, Kelly E. W. [1 ,2 ]
Economos, Nicholas G. [1 ,2 ,3 ]
Glazer, Peter M. [1 ,2 ]
机构
[1] Yale Sch Med, Dept Therapeut Radiol, New Haven, CT 06520 USA
[2] Yale Sch Med, Dept Genet, New Haven, CT USA
[3] Brigham & Womens Hosp, Dept Med, Boston, MA USA
关键词
peptide nucleic acids; CRISPR-Cas9; allele specificity; off-target; specificity; regulation; PNA; INHIBITORS; CELLS;
D O I
10.1089/nat.2024.0007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although CRISPR-Cas9 gene therapies have proven to be a powerful tool across many applications, improvements are necessary to increase the specificity of this technology. Cas9 cutting in off-target sites remains an issue that limits CRISPR's application in human-based therapies. Treatment of autosomal dominant diseases also remains a challenge when mutant alleles differ from the wild-type sequence by only one base pair. Here, we utilize synthetic peptide nucleic acids (PNAs) that bind selected spacer sequences in the guide RNA (gRNA) to increase Cas9 specificity up to 10-fold. We interrogate variations in PNA length, binding position, and degree of homology with the gRNA. Our findings reveal that PNAs bound in the region distal to the protospacer adjacent motif (PAM) site effectively enhance specificity in both on-target/off-target and allele-specific scenarios. In addition, we demonstrate that introducing deliberate mismatches between PNAs bound in the PAM-proximal region of the gRNA can modulate Cas9 activity in an allele-specific manner. These advancements hold promise for addressing current limitations and expanding the therapeutic potential of CRISPR technology.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [31] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [32] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [33] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855
  • [34] MicroRNAs tame CRISPR-Cas9
    Jouravleva, Karina
    Zamore, Phillip D.
    NATURE CELL BIOLOGY, 2019, 21 (04) : 416 - 417
  • [35] CRISPR-Cas9 wins Nobel
    Strzyz, Paulina
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (12) : 714 - 714
  • [36] The invisible dance of CRISPR-Cas9
    Palermo, Giulia
    Ricci, Clarisse G.
    McCammon, J. Andrew
    PHYSICS TODAY, 2019, 72 (04) : 30 - 36
  • [37] CRISPR-Cas9 in cancer therapeutics
    Randhawa, Shubhchintan
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 129 - 163
  • [38] CRISPR-Cas9 Structures and Mechanisms
    Jiang, Fuguo
    Doudna, Jennifer A.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 46, 2017, 46 : 505 - 529
  • [39] CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes
    Tong, Yaojun
    Whitford, Christopher M.
    Blin, Kai
    Jorgensen, Tue S.
    Weber, Tilmann
    Lee, Sang Yup
    NATURE PROTOCOLS, 2020, 15 (08) : 2470 - 2502
  • [40] Solvent Accessibility of CRISPR-CAS9 Target DNA is Correlated with Substrate Specificity
    Hand, Travis H.
    Das, Anuska
    Duboy, Emily
    Roth, Mitchell
    Smith, Chardasia
    Baptist, Uriel
    Li, Hong
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 252A - 252A