Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity

被引:0
|
作者
Carufe, Kelly E. W. [1 ,2 ]
Economos, Nicholas G. [1 ,2 ,3 ]
Glazer, Peter M. [1 ,2 ]
机构
[1] Yale Sch Med, Dept Therapeut Radiol, New Haven, CT 06520 USA
[2] Yale Sch Med, Dept Genet, New Haven, CT USA
[3] Brigham & Womens Hosp, Dept Med, Boston, MA USA
关键词
peptide nucleic acids; CRISPR-Cas9; allele specificity; off-target; specificity; regulation; PNA; INHIBITORS; CELLS;
D O I
10.1089/nat.2024.0007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although CRISPR-Cas9 gene therapies have proven to be a powerful tool across many applications, improvements are necessary to increase the specificity of this technology. Cas9 cutting in off-target sites remains an issue that limits CRISPR's application in human-based therapies. Treatment of autosomal dominant diseases also remains a challenge when mutant alleles differ from the wild-type sequence by only one base pair. Here, we utilize synthetic peptide nucleic acids (PNAs) that bind selected spacer sequences in the guide RNA (gRNA) to increase Cas9 specificity up to 10-fold. We interrogate variations in PNA length, binding position, and degree of homology with the gRNA. Our findings reveal that PNAs bound in the region distal to the protospacer adjacent motif (PAM) site effectively enhance specificity in both on-target/off-target and allele-specific scenarios. In addition, we demonstrate that introducing deliberate mismatches between PNAs bound in the PAM-proximal region of the gRNA can modulate Cas9 activity in an allele-specific manner. These advancements hold promise for addressing current limitations and expanding the therapeutic potential of CRISPR technology.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [41] Allergan dives into CRISPR-Cas9
    不详
    NATURE BIOTECHNOLOGY, 2017, 35 (04) : 296 - 296
  • [42] CRISPR-Cas9 as a Trojan horse
    Monte, Daniel F. M.
    MOLECULAR THERAPY, 2023, 31 (10) : 2817 - 2818
  • [43] CRISPR-Cas9: Advances and Challenges
    Charpentier, E.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 766 - 766
  • [44] CRISPR-Cas9 for muscle dystrophies
    Ballouhey, Oceane
    Bartoli, Marc
    Levy, Nicolas
    M S-MEDECINE SCIENCES, 2020, 36 (04): : 358 - 366
  • [45] CRISPR-Cas9: Power And Challenges
    Charpentier, Emmanuelle
    FASEB JOURNAL, 2016, 30
  • [46] Inflammation conditional genome editing mediated by the CRISPR-Cas9 system
    Yuan, Tingting
    Tang, Honglin
    Xu, Xiaojie
    Shao, Jingjing
    Wu, Gaojun
    Cho, Young-Chang
    Ping, Yuan
    Liang, Guang
    ISCIENCE, 2023, 26 (06)
  • [47] Design of hypoxia responsive CRISPR-Cas9 for target gene regulation
    An, Yan
    Talwar, Chandana S.
    Park, Kwang-Hyun
    Ahn, Woo-Chan
    Lee, Su-Jin
    Go, Seong-Ryeong
    Cho, Jin Hwa
    Kim, Do Yon
    Kim, Yong-Sam
    Cho, Sayeon
    Kim, Jeong-Hoon
    Kim, Tae-Jip
    Woo, Eui-Jeon
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [48] Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts
    Wang, Laiyou
    Deng, Aihua
    Zhang, Yun
    Liu, Shuwen
    Liang, Yong
    Bai, Hua
    Cui, Di
    Qiu, Qidi
    Shang, Xiuling
    Yang, Zhao
    He, Xiuping
    Wen, Tingyi
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [49] DEVELOPING A SAFE METHOD FOR CRISPR-CAS9 MEDIATED CFTR CORRECTION
    Xia, E.
    Hu, J.
    PEDIATRIC PULMONOLOGY, 2018, 53 : 221 - 222
  • [50] CRISPR-Cas9 Mediated Genome Editing in Bicyclus anynana Butterflies
    Banerjee, Tirtha Das
    Monteiro, Antonia
    METHODS AND PROTOCOLS, 2018, 1 (02) : 1 - 33