Airfoil Self-Noise Prediction Using Artificial Neural Networks for CFD Boundary Layer Parameter

被引:0
|
作者
Lee, Jaewon [1 ]
Ju, Byeonggyu [1 ]
Jung, Yong Su [1 ]
机构
[1] Pusan Natl Univ, Dept Aerosp Engn, Busan, South Korea
关键词
Airfoil Self-Noise; Artificial Neural Network; Boundary Layer Parameter; Reynolds-Averaged Navier-Stokes (RANS);
D O I
10.5139/JKSAS.2024.52.5.367
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study presents the development of an artificial neural network-based boundary layer parameter prediction model, trained using two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations. The model accurately predicts boundary layer and displacement thicknesses on the trailing edge of diverse airfoil shapes, alongside estimating airfoil self-noise using empirical formulations. Employing this boundary layer model, the study analyzes the self-noise sensitivity of airfoil shapes, exploring variations in maximum thickness and camber across NACA airfoils. The findings revealed discernible trends in maximum thickness and camber of the airfoils with respect to angle of attack, lift coefficient, and lift-to-drag ratio. Furthermore, the model is extended to assess the UH-1B hovering rotor, predicting both tonal noise and airfoil self-noise across parameteric sweeps of tip Mach number, number of blades, rotor solidity, maximum thickness, and camber. The observed trends confirm the influence of these rotor parameters on tonal noise and self-noise levels.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [21] Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network
    Wu Xiao-guang
    Shi Zhong-kun
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2006, 5 (02) : 36 - 41
  • [22] Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network
    Wu Xiao-guang
    Shi Zhong-kun
    Journal of Marine Science and Application, 2006, 5 (2) : 36 - 41
  • [23] Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network
    WU Xiao-guang 1
    2. China Ship Development and Design Center
    JournalofMarineScienceandApplication, 2006, (02) : 36 - 41
  • [24] Prediction of annoyance evaluations of electric vehicle noise by using artificial neural networks
    Steinbach, Lisa
    Altinsoy, M. Ercan
    APPLIED ACOUSTICS, 2019, 145 : 149 - 158
  • [25] Airfoil Self Noise Prediction Using Linear Regression Approach
    Sathyadevan, Shiju
    Chaitra, M. A.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 551 - 561
  • [26] Self-Noise Cancellation in Underwater Acoustics using Deep Neural Network Frameworks
    Kumar, Pawan
    Ali, Murtiza
    Nathwani, Karan
    OCEANS 2023 - LIMERICK, 2023,
  • [27] Airfoil Trailing Edge Noise Reduction Using a Boundary-Layer Bump
    Shi, Yuejun
    Lee, Seongkyu
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2019, 105 (05) : 814 - 826
  • [28] Prediction of self-compacting concrete strength using artificial neural networks
    Asteris, P. G.
    Kolovos, K. G.
    Douvika, M. G.
    Roinos, K.
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2016, 20 : s102 - s122
  • [29] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [30] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241