Airfoil Self-Noise Prediction Using Artificial Neural Networks for CFD Boundary Layer Parameter

被引:0
|
作者
Lee, Jaewon [1 ]
Ju, Byeonggyu [1 ]
Jung, Yong Su [1 ]
机构
[1] Pusan Natl Univ, Dept Aerosp Engn, Busan, South Korea
关键词
Airfoil Self-Noise; Artificial Neural Network; Boundary Layer Parameter; Reynolds-Averaged Navier-Stokes (RANS);
D O I
10.5139/JKSAS.2024.52.5.367
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study presents the development of an artificial neural network-based boundary layer parameter prediction model, trained using two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations. The model accurately predicts boundary layer and displacement thicknesses on the trailing edge of diverse airfoil shapes, alongside estimating airfoil self-noise using empirical formulations. Employing this boundary layer model, the study analyzes the self-noise sensitivity of airfoil shapes, exploring variations in maximum thickness and camber across NACA airfoils. The findings revealed discernible trends in maximum thickness and camber of the airfoils with respect to angle of attack, lift coefficient, and lift-to-drag ratio. Furthermore, the model is extended to assess the UH-1B hovering rotor, predicting both tonal noise and airfoil self-noise across parameteric sweeps of tip Mach number, number of blades, rotor solidity, maximum thickness, and camber. The observed trends confirm the influence of these rotor parameters on tonal noise and self-noise levels.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [41] Prediction of Self-Diffusion in Binary Fluid Mixtures Using Artificial Neural Networks
    Allers, Joshua P.
    Keth, Jane
    Alam, Todd M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (24): : 4555 - 4564
  • [42] Response prediction of self-centered concrete walls using artificial neural networks
    Foyouzati, Amin
    Khaloo, Alireza
    SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 2025,
  • [43] Reconstruction and Size Prediction of Prior Austenite Grain Boundary (PAGB) using Artificial Neural Networks
    Kim, Bong-Kyu
    Goo, Nam Hoon
    Lee, Jong Hyuk
    Han, Jun Hyun
    KOREAN JOURNAL OF METALS AND MATERIALS, 2020, 58 (12): : 822 - 829
  • [44] Prediction of BLEVE blast loading using CFD and artificial neural network
    Li, Jingde
    Li, Qilin
    Hao, Hong
    Li, Ling
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 149 : 711 - 723
  • [45] Road traffic noise prediction model based on artificial neural networks
    Acosta, Oscar
    Montenegro, Carlos
    Crespo, Ruben Gonzalez
    HELIYON, 2024, 10 (17)
  • [47] Description and Prediction of Multi-layer Profile in Cold Spray Using Artificial Neural Networks
    Meimei Liu
    Hongjian Wu
    Zexin Yu
    Hanlin Liao
    Sihao Deng
    Journal of Thermal Spray Technology, 2021, 30 : 1453 - 1463
  • [48] Description and Prediction of Multi-layer Profile in Cold Spray Using Artificial Neural Networks
    Liu, Meimei
    Wu, Hongjian
    Yu, Zexin
    Liao, Hanlin
    Deng, Sihao
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2021, 30 (06) : 1453 - 1463
  • [49] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [50] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582