Inert structural transition in 4H and 6H SiC at high pressure and temperature: a Raman spectroscopy study

被引:0
|
作者
Maitani, Shuhou [1 ]
Sinmyo, Ryosuke [1 ]
Ishii, Takayuki [2 ]
Yoza, Kenji [3 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Phys, 1-1-1 Higashi Mita,Tama ku, Kawasaki, Kanagawa 2148571, Japan
[2] Okayama Univ, Inst Planetary Mat, 827 Yamada, Misasa, Tottori 6820193, Japan
[3] Bruker Japan K K, Yokohama, Kanagawa 2210022, Japan
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2024年 / 8卷 / 06期
关键词
SiC; Raman; phase transitions; high pressure; high temperature; diamond anvil cell; crystal structure; DIAMOND-ANVIL CELL; OPTICAL PHONONS; PHASE-TRANSITION; DEPENDENCE; SCATTERING; CARBIDE; SENSOR; CALIBRATION; APPARATUS; POLYTYPE;
D O I
10.1088/2399-6528/ad5410
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We conducted Raman spectroscopy measurements of 4H-SiC and 6H-SiC up to 69 GPa and 1023 K to assess the stability and bonding of SiC at high pressure and temperature. Both optic and acoustic modes were observed at wide pressure and temperature ranges. The temperature shifts of the Raman frequencies were fitted by the equation with the Bose-Einstein distribution function, and we found that the shifts were almost insensitive to the pressure. The mode Gr & uuml;neisen coefficients weakly depend on the pressure and temperature, suggesting the sluggish transition of the crystal structure, unlike the previous experiments showing the transition or decomposition of SiC at high pressure and temperature conditions. Inert transitions are confirmed by Raman measurements and annealing experiments using multiple high-pressure apparatuses. The crystallinity may be a hidden critical parameter in the experiments to determine the stable polytypes of SiC under high pressure and temperature.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Electronic structure of the neutral silicon vacancy in 4H and 6H SiC
    Wagner, M
    Magnusson, B
    Chen, WM
    Janzén, E
    Sörman, E
    Hallin, C
    Lindström, JL
    PHYSICAL REVIEW B, 2000, 62 (24) : 16555 - 16560
  • [22] Evidence for phosphorus on carbon and silicon sites in 6H and 4H SiC
    Yan, F.
    Devaty, R. P.
    Choyke, W. J.
    Gali, A.
    Bhat, I. B.
    Larkin, D. J.
    Silicon Carbide and Related Materials 2005, Pts 1 and 2, 2006, 527-529 : 585 - 588
  • [23] Nitrogen-related point defect in 4H and 6H SiC
    Zvanut, M. E.
    van Tol, J.
    PHYSICA B-CONDENSED MATTER, 2007, 401 : 73 - 76
  • [24] Growth of 4H and 6H SiC in trenches and around stripe mesas
    Nordell, N
    Karlsson, S
    Konstantinov, AO
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 131 - 134
  • [25] A complex defect related to the carbon vacancy in 4H and 6H SiC
    Son, NT
    Chen, WM
    Lindström, JL
    Monemar, B
    Janzén, E
    PHYSICA SCRIPTA, 1999, T79 : 46 - 49
  • [26] Growth of 4H and 6H SiC in trenches and around stripe mesas
    Industrial Microelectronics Cent, Kista, Sweden
    Mater Sci Forum, pt 1 (131-134):
  • [27] Effects of microwave fields on recombination processes in 4H and 6H SiC
    Son, NT
    Sorman, E
    Chen, WM
    Bergman, JP
    Hallin, C
    Kordina, O
    Konstantinov, AO
    Monemar, B
    Janzen, E
    Hofmann, DM
    Volm, D
    Meyer, BK
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (04) : 1929 - 1932
  • [28] alpha(6H)-SiC pressure sensors for high temperature applications
    Okojie, RS
    Ned, AA
    Kurtz, AD
    Carr, WN
    NINTH ANNUAL INTERNATIONAL WORKSHOP ON MICRO ELECTRO MECHANICAL SYSTEMS, IEEE PROCEEDINGS: AN INVESTIGATION OF MICRO STRUCTURES, SENSORS, ACTUATORS, MACHINES AND SYSTEMS, 1996, : 146 - 149
  • [29] RAMAN SCATTERING IN 6H SIC
    FELDMAN, DW
    PARKER, JH
    CHOYKE, WJ
    PATRICK, L
    PHYSICAL REVIEW, 1968, 170 (03): : 698 - &
  • [30] High temperature dependence of Fowler-Nordheim emission tunneling current in (6H) and (4H) SIC MOS capacitors
    Bano, E
    Ouisse, T
    Lassagne, P
    Billon, T
    Jaussaud, C
    SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 733 - 736