Inert structural transition in 4H and 6H SiC at high pressure and temperature: a Raman spectroscopy study

被引:0
|
作者
Maitani, Shuhou [1 ]
Sinmyo, Ryosuke [1 ]
Ishii, Takayuki [2 ]
Yoza, Kenji [3 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Phys, 1-1-1 Higashi Mita,Tama ku, Kawasaki, Kanagawa 2148571, Japan
[2] Okayama Univ, Inst Planetary Mat, 827 Yamada, Misasa, Tottori 6820193, Japan
[3] Bruker Japan K K, Yokohama, Kanagawa 2210022, Japan
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2024年 / 8卷 / 06期
关键词
SiC; Raman; phase transitions; high pressure; high temperature; diamond anvil cell; crystal structure; DIAMOND-ANVIL CELL; OPTICAL PHONONS; PHASE-TRANSITION; DEPENDENCE; SCATTERING; CARBIDE; SENSOR; CALIBRATION; APPARATUS; POLYTYPE;
D O I
10.1088/2399-6528/ad5410
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We conducted Raman spectroscopy measurements of 4H-SiC and 6H-SiC up to 69 GPa and 1023 K to assess the stability and bonding of SiC at high pressure and temperature. Both optic and acoustic modes were observed at wide pressure and temperature ranges. The temperature shifts of the Raman frequencies were fitted by the equation with the Bose-Einstein distribution function, and we found that the shifts were almost insensitive to the pressure. The mode Gr & uuml;neisen coefficients weakly depend on the pressure and temperature, suggesting the sluggish transition of the crystal structure, unlike the previous experiments showing the transition or decomposition of SiC at high pressure and temperature conditions. Inert transitions are confirmed by Raman measurements and annealing experiments using multiple high-pressure apparatuses. The crystallinity may be a hidden critical parameter in the experiments to determine the stable polytypes of SiC under high pressure and temperature.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Ab initio quasiparticle energies in 2H, 4H, and 6H SiC
    Ummels, RTM
    Bobbert, PA
    van Haeringen, W
    PHYSICAL REVIEW B, 1998, 58 (11) : 6795 - 6799
  • [32] HREM investigation of structural defects in Al- and B- implanted 4H and 6H SiC
    Persson, POA
    Olsson, E
    Hultman, L
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1999, PROCEEDINGS, 1999, (164): : 525 - 528
  • [33] Static and dynamic properties of 4.5 kV MOSFETs in 4H and 6H SiC - Simulation study
    Gustafsson, U
    Bakowski, M
    Lindefelt, U
    SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 793 - 796
  • [34] Electron mobility models for 4H, 6H, and 3C SiC
    Roschke, M
    Schwierz, F
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (07) : 1442 - 1447
  • [35] CVD growth of 3C-SiC on 4H/6H mesas
    Neudeck, Philip G.
    Trunek, Andrew J.
    Spry, David J.
    Powell, J. Anthony
    Du, Hui
    Skowronski, Marek
    Huang, Xian Rong
    Dudley, Michael
    CHEMICAL VAPOR DEPOSITION, 2006, 12 (8-9) : 531 - 540
  • [36] SOME NEW FEATURES OF THE PHOTOLUMINESCENCE OF SIC(6H), SIC(4H), AND SIC(15R)
    HABERSTROH, C
    HELBIG, R
    STEIN, RA
    JOURNAL OF APPLIED PHYSICS, 1994, 76 (01) : 509 - 513
  • [37] Characterization of electrically active deep level defects in 4H and 6H SiC
    Doyle, JP
    Aboelfotoh, MO
    Svensson, BG
    Schoner, A
    Nordell, N
    DIAMOND AND RELATED MATERIALS, 1997, 6 (10) : 1388 - 1391
  • [38] 4H(6H)-SiC表面重构的STM/STS研究
    卢慧
    王昊霖
    杨德仁
    皮孝东
    真空科学与技术学报, 2023, 43 (03) : 191 - 201
  • [39] Diffusion of boron in 6H and 4H SiC coimplanted with boron and nitrogen ions
    Usov, I.O.
    Suvorova, A.A.
    Kudriavtsev, Y.A.
    Suvorov, A.V.
    Journal of Applied Physics, 2004, 96 (09): : 4960 - 4964
  • [40] HF chemical etching of SiO2 on 4H and 6H SiC
    M. B. Johnson
    M. E. Zvanut
    Otha Richardson
    Journal of Electronic Materials, 2000, 29 : 368 - 371