funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs

被引:1
|
作者
Betancourt, Jose [1 ]
Bachoc, Francois [1 ]
Klein, Thierry [1 ]
Idier, Deborah [2 ]
Rohmer, Jeremy [2 ]
Deville, Yves [3 ]
机构
[1] Univ Toulouse, Ecole Natl Aviat Civile ENAC, Inst Math Toulouse IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Bur Rech Geol & Minieres BRGM, 3 Av Claude Guillemin, F-45060 Orleans 2, France
[3] Alpestat, Chambery, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 109卷 / 05期
关键词
Gaussian process; metamodeling; functional inputs; computer experiments; R; ANT COLONY OPTIMIZATION; COMPUTER EXPERIMENTS; CROSS-VALIDATION; MODEL; ALGORITHM; METHODOLOGY;
D O I
10.18637/jss.v109.i05
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces funGp, an R package which handles regression problems involving multiple scalar and/or functional inputs, and a scalar output, through the Gaussian process model. This is particularly of interest for the design and analysis of computer experiments with expensive-to-evaluate numerical codes that take as inputs regularly sampled time series. Rather than imposing any particular parametric input-output relationship in advance (e.g., linear, polynomial), Gaussian process models extract this information directly from the data. The package offers built-in dimension reduction, which helps to simplify the representation of the functional inputs and obtain lighter models. It also implements an ant colony based optimization algorithm which supports the calibration of multiple structural characteristics of the model such as the state of each input (active or inactive) and the type of kernel function, while seeking for greater prediction power. The implemented methods are tested and applied to a real case in the domain of marine flooding.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 50 条
  • [1] mgpr: An R package for multivariate Gaussian process regression
    Varvia, Petri
    Raty, Janne
    Packalen, Petteri
    SOFTWAREX, 2023, 24
  • [2] A Gaussian Process Regression Model for Distribution Inputs
    Bachoc, Francois
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Venet, Nil
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6620 - 6637
  • [3] Penalized functional regression using R package PFLR
    Cameron, Rob
    Guan, Tianyu
    Shi, Haolun
    Lin, Zhenhua
    JOURNAL OF APPLIED STATISTICS, 2025,
  • [4] Gaussian Process Regression with Categorical Inputs for Predicting the Blood Glucose Level
    Tomczak, Jakub M.
    ADVANCES IN SYSTEMS SCIENCE, ICSS 2016, 2017, 539 : 98 - 108
  • [5] Gaussian Process Modeling of Finite Element Models with Functional Inputs
    Tan, Matthias H. Y.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (04): : 1133 - 1161
  • [6] spNNGP R Package for Nearest Neighbor Gaussian Process Models
    Finley, Andrew O.
    Datta, Abhirup
    Banerjee, Sudipto
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 103 (05): : 1 - 40
  • [7] Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models
    Gramacy, Robert B.
    Taddy, Matthew
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (06): : 1 - 48
  • [8] logitFD: an R package for functional principal component logit regression
    Escabias, Manuel
    Aguilera, Ana M.
    Acal, Christian
    R JOURNAL, 2022, 14 (03): : 231 - 248
  • [9] Gaussian process regression with functional covariates and multivariate response
    Wang, Bo
    Chen, Tao
    Xu, Aiping
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 163 : 1 - 6
  • [10] Gaussian process functional regression Modeling for batch data
    Shi, J. Q.
    Wang, B.
    Murray-Smith, R.
    Titterington, D. M.
    BIOMETRICS, 2007, 63 (03) : 714 - 723