Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

被引:2
|
作者
Gramacy, Robert B. [1 ]
Taddy, Matthew [2 ]
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
[2] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2010年 / 33卷 / 06期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
treed Gaussian process; categorical inputs; sensitivity analysis; experiment design; optimization; importance sampling; simulated tempering; Bayesian model averaging; R; CHAIN MONTE-CARLO; DISTRIBUTIONS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP) models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART), to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007).
引用
收藏
页码:1 / 48
页数:48
相关论文
共 7 条
  • [1] Classification and Categorical Inputs with Treed Gaussian Process Models
    Broderick, Tamara
    Gramacy, Robert B.
    [J]. JOURNAL OF CLASSIFICATION, 2011, 28 (02) : 244 - 270
  • [2] Classification and Categorical Inputs with Treed Gaussian Process Models
    Tamara Broderick
    Robert B. Gramacy
    [J]. Journal of Classification, 2011, 28 : 244 - 270
  • [3] Sensitivity Analysis of Generalized Gaussian Process Models for Variable Importance Measure
    Zhang, Xinmin
    Kano, Manabu
    Li, Yuan
    [J]. 2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 1487 - 1491
  • [4] bsamGP: An R Package for Bayesian Spectral Analysis Models Using Gaussian Process Priors
    Jo, Seongil
    Choi, Taeryon
    Park, Beomjo
    Lenk, Peter
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 90 (10):
  • [5] GPareto: An R Package for Gaussian-Process-Based Multi-Objective Optimization and Analysis
    Binois, Mickael
    Picheny, Victor
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 89 (08): : 1 - 30
  • [6] SEMsens: An R Package for Sensitivity Analysis of Structural Equation Models With the Ant Colony Optimization Algorithm
    Shen, Zuchao
    Leite, Walter L.
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2022, 46 (02) : 159 - 161
  • [7] Estimation and Validation of Gaussian Process Surrogate Models for Sensitivity Analysis and Design Optimization Based on the Mechanistic-Empirical Pavement Design Guide
    Retherford, Jennifer Q.
    McDonald, Mark
    [J]. TRANSPORTATION RESEARCH RECORD, 2011, (2226) : 119 - 126