Weak magnetohydrodynamic turbulence theory revisited

被引:0
|
作者
Ziebell, Luiz F. [1 ]
Yoon, Peter H. [2 ]
Choe, Gwangson [3 ]
机构
[1] Univ Fed Rio Grande Do Sul UFRGS, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Kyung Hee Univ, Sch Space Res, Yongin 17104, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
SPECTRUM;
D O I
10.1063/5.0195994
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, <delta B-i delta B-j >(k) = <delta B-2 >(k)delta(ij). However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvenic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, <delta B-i delta B-j >(k) = 1/2 <delta B-perpendicular to(2)>(k) (delta(ij) - k(i)k(j)/k(2)) + <delta B-parallel to(2)>(k) (k(i)k(j)/k(2)). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation. (C) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
    Zank, G. P.
    Adhikari, L.
    Hunana, P.
    Shiota, D.
    Bruno, R.
    Telloni, D.
    Avinash, K.
    16TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: TURBULENCE, STRUCTURES, AND PARTICLE ACCELERATION THROUGHOUT THE HELIOSPHERE AND BEYOND, 2017, 900
  • [32] The SMART Experiment and Weak Turbulence Theory
    Crabtree, Chris
    Ganguli, Guru
    Fletcher, Alex
    Soto, A. Rualdo
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 339 - 339
  • [33] A weak turbulence theory for incompressible magnetohydrodynamics
    Galtier, S
    Nazarenko, SV
    Newell, AC
    Pouquet, A
    JOURNAL OF PLASMA PHYSICS, 2000, 63 : 447 - 488
  • [34] NUMERICAL TEST OF WEAK TURBULENCE THEORY
    PAYNE, GL
    NICHOLSON, DR
    SHEN, MM
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (09): : 1797 - 1804
  • [35] Weak turbulence theory for reactive instability
    Yoon, P. H.
    PHYSICS OF PLASMAS, 2010, 17 (11)
  • [36] A weak turbulence theory for incompressible magnetohydrodynamics
    Galtier, S
    Nazarenko, S
    Newell, AC
    Pouquet, A
    NONLINEAR MHD WAVES AND TURBULENCE, 1999, 536 : 291 - 330
  • [37] Weak turbulence theory for collisional plasmas
    Yoon, P. H.
    Ziebell, L. F.
    Kontar, E. P.
    Schlickeiser, R.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [38] Kinetic theory of weak turbulence in plasmas
    Wang, Shaojie
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [39] Statistical theory of electromagnetic weak turbulence
    Yoon, PH
    PHYSICS OF PLASMAS, 2006, 13 (02)
  • [40] THEORY OF WEAK PARAMETRIC TURBULENCE OF A PLASMA
    MIKHAILENKO, VS
    STEPANOV, KN
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1984, 87 (01): : 161 - 176