Weak magnetohydrodynamic turbulence theory revisited

被引:0
|
作者
Ziebell, Luiz F. [1 ]
Yoon, Peter H. [2 ]
Choe, Gwangson [3 ]
机构
[1] Univ Fed Rio Grande Do Sul UFRGS, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Kyung Hee Univ, Sch Space Res, Yongin 17104, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
SPECTRUM;
D O I
10.1063/5.0195994
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, <delta B-i delta B-j >(k) = <delta B-2 >(k)delta(ij). However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvenic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, <delta B-i delta B-j >(k) = 1/2 <delta B-perpendicular to(2)>(k) (delta(ij) - k(i)k(j)/k(2)) + <delta B-parallel to(2)>(k) (k(i)k(j)/k(2)). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation. (C) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Weak magnetohydrodynamic turbulence of magnetized plasma
    Kuznetsov, E.A.
    Zhurnal Eksperimental'noj i Teoreticheskoj Fiziki, 2001, 120 (05): : 1213 - 1227
  • [12] Weak and strong regimes of incompressible magnetohydrodynamic turbulence
    Gogoberidze, G.
    Mahajan, S. M.
    Poedts, S.
    PHYSICS OF PLASMAS, 2009, 16 (07)
  • [13] Weak compressible magnetohydrodynamic turbulence in the solar corona
    Chandran, BDG
    PHYSICAL REVIEW LETTERS, 2005, 95 (26)
  • [14] Recent developments in the theory of magnetohydrodynamic turbulence
    Mueller, Wolf-Christian
    Busse, Angela
    TURBULENCE AND NONLINEAR PROCESSES IN ASTROPHYSICAL PLASMAS, 2007, 932 : 52 - 57
  • [15] A SIMPLIFIED THEORY OF MAGNETOHYDRODYNAMIC ISOTROPIC TURBULENCE
    BETCHOV, R
    JOURNAL OF FLUID MECHANICS, 1963, 17 (01) : 33 - 51
  • [16] STATISTICAL-THEORY OF MAGNETOHYDRODYNAMIC TURBULENCE
    FORSTE, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (07): : 337 - 340
  • [17] Space-time structure of weak magnetohydrodynamic turbulence
    Azelis, Augustus A.
    Perez, Jean C.
    Bourouaine, Sofiane
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (01)
  • [18] Weak Alfven-wave turbulence revisited
    Schekochihin, Alexander A.
    Nazarenko, Sergey V.
    Yousef, Tarek A.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [19] Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
    Zank, G. P.
    Adhikari, L.
    Hunana, P.
    Shiota, D.
    Bruno, R.
    Telloni, D.
    ASTROPHYSICAL JOURNAL, 2017, 835 (02):
  • [20] Theory and simulation of real and ideal magnetohydrodynamic turbulence
    Shebalin, JV
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (01): : 153 - 174