A weak turbulence theory for incompressible magnetohydrodynamics

被引:0
|
作者
Galtier, S [1 ]
Nazarenko, S [1 ]
Newell, AC [1 ]
Pouquet, A [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
来源
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a weak turbulence formalism for incompressible MHD. Three-wave interactions lead to a system of kinetic equations for the spectral densities of energy and helicity. The kinetic equations conserve energy in all wavevector planes normal to the applied magnetic field B-o(e) over cap (parallel to) Numerically and analytically, we find energy spectra E+/- similar to k(perpendicular to)(n+/-), such that n(+) + n(-) = -4, where E+/- are the spectra of the Elsasser variables z(+/-) = v +/- b in the two-dimensional case (k(parallel to) = 0). The constants of the spectra are computed exactly and found to depend on the amount of correlation between the velocity and the magnetic field. Comparison with several numerical simulations and models is also made.
引用
收藏
页码:291 / 330
页数:40
相关论文
共 50 条
  • [1] A weak turbulence theory for incompressible magnetohydrodynamics
    Galtier, S
    Nazarenko, SV
    Newell, AC
    Pouquet, A
    JOURNAL OF PLASMA PHYSICS, 2000, 63 : 447 - 488
  • [2] Coexistence of Weak and Strong Wave Turbulence in Incompressible Hall Magnetohydrodynamics
    Meyrand, Romain
    Kiyani, Khurom H.
    Gurcan, Ozgur D.
    Galtier, Sebastien
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [3] Weak turbulence theory for rotating magnetohydrodynamics and planetary flows
    Galtier, Sebastien
    JOURNAL OF FLUID MECHANICS, 2014, 757 : 114 - 154
  • [4] Wave turbulence in incompressible Hall magnetohydrodynamics
    Galtier, Sebastien
    JOURNAL OF PLASMA PHYSICS, 2006, 72 : 721 - 769
  • [5] Weak turbulence in two-dimensional magnetohydrodynamics
    Tronko, N.
    Nazarenko, S. V.
    Galtier, S.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [6] Hamiltonian canonical formulation of Hall-magnetohydrodynamics: Toward an application to weak turbulence theory
    Sahraoui, F
    Belmont, G
    Rezeau, L
    PHYSICS OF PLASMAS, 2003, 10 (05) : 1325 - 1337
  • [7] NEARLY INCOMPRESSIBLE FLUIDS .2. MAGNETOHYDRODYNAMICS, TURBULENCE, AND WAVES
    ZANK, GP
    MATTHAEUS, WH
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (01): : 257 - 273
  • [8] Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics
    Galtier, S
    Bhattacharjee, A
    PHYSICS OF PLASMAS, 2003, 10 (08) : 3065 - 3076
  • [9] ON THE THEORY OF TURBULENCE FOR INCOMPRESSIBLE FLUIDS
    周培源
    陈十一
    Science China Mathematics, 1987, (07) : 725 - 738
  • [10] ON THE THEORY OF TURBULENCE FOR INCOMPRESSIBLE FLUIDS
    ZHOU, PY
    CHEN, SY
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1987, 10 : 403 - 417