Adapting to General Quadratic Loss via Singular Value Shrinkage

被引:0
|
作者
Matsuda, Takeru [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo 1138656, Japan
[2] RIKEN, Stat Math Unit, Ctr Brain Sci, Saitama 3510198, Japan
基金
日本学术振兴会;
关键词
Ellipsoids; Adaptation models; Estimation; Symmetric matrices; Adaptive estimation; Standards; Nonparametric statistics; Efron-Morris estimator; Gaussian sequence model; nonparametric estimation; singular value; DENSITY-ESTIMATION; EMPIRICAL BAYES; ASYMPTOTIC EQUIVALENCE; MINIMAX; REGRESSION; RANK; ADAPTATION;
D O I
10.1109/TIT.2023.3344649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Gaussian sequence model is a canonical model in nonparametric estimation. In this study, we introduce a multivariate version of the Gaussian sequence model and investigate adaptive estimation over the multivariate Sobolev ellipsoids, where adaptation is not only to unknown smoothness but also to arbitrary quadratic loss. First, we derive an oracle inequality for the singular value shrinkage estimator by Efron and Morris, which is a matrix generalization of the James-Stein estimator. Next, we develop an asymptotically minimax estimator on the multivariate Sobolev ellipsoid for each quadratic loss, which can be viewed as a generalization of Pinsker's theorem. Then, we show that the blockwise Efron-Morris estimator is exactly adaptive minimax over the multivariate Sobolev ellipsoids under the corresponding quadratic loss. It attains sharp adaptive estimation of any linear combination of the mean sequences simultaneously.
引用
收藏
页码:3640 / 3657
页数:18
相关论文
共 50 条
  • [41] A singular value p-shrinkage thresholding algorithm for low rank matrix recovery
    Yu-Fan Li
    Kun Shang
    Zheng-Hai Huang
    Computational Optimization and Applications, 2019, 73 : 453 - 476
  • [42] A singular value p-shrinkage thresholding algorithm for low rank matrix recovery
    Li, Yu-Fan
    Shang, Kun
    Huang, Zheng-Hai
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (02) : 453 - 476
  • [43] Estimation of an exponential quantile under a general loss and an alternative estimator under quadratic loss
    Petropoulos, C
    Kourouklis, S
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (04) : 746 - 759
  • [44] Estimation of an Exponential Quantile under a General Loss and an Alternative Estimator under Quadratic Loss
    Constantinos Petropoulos
    Stavros Kourouklis
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 746 - 759
  • [45] Clustering large graphs via the Singular Value Decomposition
    Drineas, P
    Frieze, A
    Kannan, R
    Vempala, S
    Vinay, V
    MACHINE LEARNING, 2004, 56 (1-3) : 9 - 33
  • [46] Clustering Large Graphs via the Singular Value Decomposition
    P. Drineas
    A. Frieze
    R. Kannan
    S. Vempala
    V. Vinay
    Machine Learning, 2004, 56 : 9 - 33
  • [47] BOUNDARY VALUE PROBLEMS FOR GENERAL SINGULAR EQUATIONS IN BOUNDED REGION
    VISHIK, MI
    ESKIN, GI
    DOKLADY AKADEMII NAUK SSSR, 1964, 155 (01): : 24 - &
  • [48] A general method for remontaging based on a singular value decomposition algorithm
    Lagerlund, TD
    Sharbrough, FW
    Busacker, NE
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2003, 20 (03) : 179 - 187
  • [49] Computing the analytic singular value decomposition via a pathfollowing
    Janovsky, Vladimir
    Janovska, Drahoslava
    Tanabe, Kunio
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 954 - +
  • [50] JORDAN FORM REALIZATION VIA SINGULAR VALUE DECOMPOSITION
    FAIRMAN, FW
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (11): : 1431 - 1434