Adapting to General Quadratic Loss via Singular Value Shrinkage

被引:0
|
作者
Matsuda, Takeru [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo 1138656, Japan
[2] RIKEN, Stat Math Unit, Ctr Brain Sci, Saitama 3510198, Japan
基金
日本学术振兴会;
关键词
Ellipsoids; Adaptation models; Estimation; Symmetric matrices; Adaptive estimation; Standards; Nonparametric statistics; Efron-Morris estimator; Gaussian sequence model; nonparametric estimation; singular value; DENSITY-ESTIMATION; EMPIRICAL BAYES; ASYMPTOTIC EQUIVALENCE; MINIMAX; REGRESSION; RANK; ADAPTATION;
D O I
10.1109/TIT.2023.3344649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Gaussian sequence model is a canonical model in nonparametric estimation. In this study, we introduce a multivariate version of the Gaussian sequence model and investigate adaptive estimation over the multivariate Sobolev ellipsoids, where adaptation is not only to unknown smoothness but also to arbitrary quadratic loss. First, we derive an oracle inequality for the singular value shrinkage estimator by Efron and Morris, which is a matrix generalization of the James-Stein estimator. Next, we develop an asymptotically minimax estimator on the multivariate Sobolev ellipsoid for each quadratic loss, which can be viewed as a generalization of Pinsker's theorem. Then, we show that the blockwise Efron-Morris estimator is exactly adaptive minimax over the multivariate Sobolev ellipsoids under the corresponding quadratic loss. It attains sharp adaptive estimation of any linear combination of the mean sequences simultaneously.
引用
收藏
页码:3640 / 3657
页数:18
相关论文
共 50 条
  • [21] NOTE ON THE QUADRATIC CONVERGENCE OF KOGBETLIANTZ ALGORITHM FOR COMPUTING THE SINGULAR VALUE DECOMPOSITION
    BAI, ZJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 104 : 131 - 140
  • [22] A discrete approach for the inverse singular value problem in some quadratic group
    Politi, T
    COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS, 2003, 2658 : 121 - 130
  • [23] A general linear quadratic stochastic control and information value
    Huang, Jianhui
    Wang, Guangchen
    Wang, Wencan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)
  • [24] Fast Singular Value Shrinkage With Chebyshev Polynomial Approximation Based on Signal Sparsity
    Onuki, Masaki
    Ono, Shunsuke
    Shirai, Keiichiro
    Tanaka, Yuichi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 6083 - 6096
  • [25] QUADRATIC-PROGRAMMING BY THE MULTIPLEX METHOD IN THE GENERAL-CASE WHERE THE QUADRATIC FORM MAY BE SINGULAR
    FRISCH, R
    BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1960, 38 (04): : 283 - 332
  • [26] Feature-oriented singular value shrinkage for optical coherence tomography image
    Chen, Huaiguang
    Fu, Shujun
    Wang, Hong
    Lv, Hongli
    Zhang, Caiming
    Wang, Fengling
    Li, Yuliang
    OPTICS AND LASERS IN ENGINEERING, 2019, 114 : 111 - 120
  • [27] System identification via singular value decomposition
    Wang, SH
    Lee, TF
    Zachery, R
    ELECTRONICS LETTERS, 1996, 32 (01) : 76 - 78
  • [28] Some singular value inequalities via convexity
    Leka, Zoltan
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (02): : 360 - 369
  • [29] Image Inpainting via Singular Value Thresholding
    Yeganli, S. Faegheh
    Yu, Runyi
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [30] Image interpolation via singular value filtering
    School of Computer Science and Technology, Shandong University, No. 27, Shanda Nanlu, Jinan
    250100, China
    不详
    250014, China
    不详
    250014, China
    ICIC Express Lett Part B Appl., 12 (3251-3258): : 3251 - 3258