Adapting to General Quadratic Loss via Singular Value Shrinkage

被引:0
|
作者
Matsuda, Takeru [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo 1138656, Japan
[2] RIKEN, Stat Math Unit, Ctr Brain Sci, Saitama 3510198, Japan
基金
日本学术振兴会;
关键词
Ellipsoids; Adaptation models; Estimation; Symmetric matrices; Adaptive estimation; Standards; Nonparametric statistics; Efron-Morris estimator; Gaussian sequence model; nonparametric estimation; singular value; DENSITY-ESTIMATION; EMPIRICAL BAYES; ASYMPTOTIC EQUIVALENCE; MINIMAX; REGRESSION; RANK; ADAPTATION;
D O I
10.1109/TIT.2023.3344649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Gaussian sequence model is a canonical model in nonparametric estimation. In this study, we introduce a multivariate version of the Gaussian sequence model and investigate adaptive estimation over the multivariate Sobolev ellipsoids, where adaptation is not only to unknown smoothness but also to arbitrary quadratic loss. First, we derive an oracle inequality for the singular value shrinkage estimator by Efron and Morris, which is a matrix generalization of the James-Stein estimator. Next, we develop an asymptotically minimax estimator on the multivariate Sobolev ellipsoid for each quadratic loss, which can be viewed as a generalization of Pinsker's theorem. Then, we show that the blockwise Efron-Morris estimator is exactly adaptive minimax over the multivariate Sobolev ellipsoids under the corresponding quadratic loss. It attains sharp adaptive estimation of any linear combination of the mean sequences simultaneously.
引用
收藏
页码:3640 / 3657
页数:18
相关论文
共 50 条
  • [31] Biclustering via Sparse Singular Value Decomposition
    Lee, Mihee
    Shen, Haipeng
    Huang, Jianhua Z.
    Marron, J. S.
    BIOMETRICS, 2010, 66 (04) : 1087 - 1095
  • [32] The Least Singular Value of the General Deformed Ginibre Ensemble
    Mariya Shcherbina
    Tatyana Shcherbina
    Journal of Statistical Physics, 2022, 189
  • [33] System identification via singular value decomposition
    Wang, SH
    Lee, TF
    Zachery, R
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2638 - 2641
  • [34] Initial value method for general singular perturbation problems
    Pavani, Loka
    VIBRATION PROBLEMS, 2015, 662
  • [35] The Least Singular Value of the General Deformed Ginibre Ensemble
    Shcherbina, Mariya
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (02)
  • [36] Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter
    Tian, Guo-Liang
    Tang, Man-Lai
    Liu, Chunling
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 255 - 265
  • [37] Simultaneous Denoising and Interpolation of 3-D Seismic Data via Damped Data-Driven Optimal Singular Value Shrinkage
    Siahsar, Mohammad Amir Nazari
    Gholtashi, Saman
    Torshizi, Ehsan Olyaei
    Chen, Wei
    Chen, Yangkang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1086 - 1090
  • [38] Numerical simulations of prestress loss due to creep and shrinkage in singular regions of concrete members
    Vrablik, L.
    Losko, J.
    Kristek, V.
    BRIDGE MAINTENANCE, SAFETY, MANAGEMENT, RESILIENCE AND SUSTAINABILITY, 2012, : 3948 - 3953
  • [39] Simultaneous Denoising and Interpolation of 3-D Seismic Data via Damped Data-Driven Optimal Singular Value Shrinkage
    Nazari Siahsar M.A.
    Gholtashi S.
    Olyaei Torshizi E.
    Chen W.
    Chen Y.
    IEEE Geoscience and Remote Sensing Letters, 2017, 14 (07): : 1086 - 1090
  • [40] ON THE QUADRATIC CONVERGENCE OF THE SERIAL SINGULAR VALUE DECOMPOSITION JACOBI METHODS FOR TRIANGULAR MATRICES
    HARI, V
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06): : 1076 - 1096