Discriminative Forests Improve Generative Diversity for Generative Adversarial Networks

被引:0
|
作者
Chen, Junjie [1 ]
Li, Jiahao [1 ]
Song, Chen [2 ]
Li, Bin
Chen, Qingcai [1 ]
Gao, Hongchang [2 ]
Wang, Wendy Hui [3 ]
Xu, Zenglin [1 ]
Shi, Xinghua [2 ]
机构
[1] Harbin Inst Technol, Shenzhen, Guangdong, Peoples R China
[2] Temple Univ, Philadelphia, PA USA
[3] Stevens Inst Technol, Hoboken, NJ USA
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Improving the diversity of Artificial Intelligence Generated Content (AIGC) is one of the fundamental problems in the theory of generative models such as generative adversarial networks (GANs). Previous studies have demonstrated that the discriminator in GANs should have high capacity and robustness to achieve the diversity of generated data. However, a discriminator with high capacity tends to overfit and guide the generator toward collapsed equilibrium. In this study, we propose a novel discriminative forest GAN, named Forest-GAN, that replaces the discriminator to improve the capacity and robustness for modeling statistics in real-world data distribution. A discriminative forest is composed of multiple independent discriminators built on bootstrapped data. We prove that a discriminative forest has a generalization error bound, which is determined by the strength of individual discriminators and the correlations among them. Hence, a discriminative forest can provide very large capacity without any risk of overfitting, which subsequently improves the generative diversity. With the discriminative forest framework, we significantly improved the performance of AutoGAN with a new record FID of 19.27 from 30.71 on STL10 and improved the performance of StyleGAN2-ADA with a new record FID of 6.87 from 9.22 on LSUN-cat.
引用
收藏
页码:11338 / 11345
页数:8
相关论文
共 50 条
  • [21] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [22] Generative Adversarial Networks in Cardiology
    Skandarani, Youssef
    Lalande, Alain
    Afilalo, Jonathan
    Jodoin, Pierre-Marc
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) : 196 - 203
  • [23] Structured Generative Adversarial Networks
    Deng, Zhijie
    Zhang, Hao
    Liang, Xiaodan
    Yang, Luona
    Xu, Shizhen
    Zhu, Jun
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [24] Quantum generative adversarial networks
    Dallaire-Demers, Pierre-Luc
    Killoran, Nathan
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [25] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [26] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [27] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [28] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [29] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [30] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65