Discriminative Forests Improve Generative Diversity for Generative Adversarial Networks

被引:0
|
作者
Chen, Junjie [1 ]
Li, Jiahao [1 ]
Song, Chen [2 ]
Li, Bin
Chen, Qingcai [1 ]
Gao, Hongchang [2 ]
Wang, Wendy Hui [3 ]
Xu, Zenglin [1 ]
Shi, Xinghua [2 ]
机构
[1] Harbin Inst Technol, Shenzhen, Guangdong, Peoples R China
[2] Temple Univ, Philadelphia, PA USA
[3] Stevens Inst Technol, Hoboken, NJ USA
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Improving the diversity of Artificial Intelligence Generated Content (AIGC) is one of the fundamental problems in the theory of generative models such as generative adversarial networks (GANs). Previous studies have demonstrated that the discriminator in GANs should have high capacity and robustness to achieve the diversity of generated data. However, a discriminator with high capacity tends to overfit and guide the generator toward collapsed equilibrium. In this study, we propose a novel discriminative forest GAN, named Forest-GAN, that replaces the discriminator to improve the capacity and robustness for modeling statistics in real-world data distribution. A discriminative forest is composed of multiple independent discriminators built on bootstrapped data. We prove that a discriminative forest has a generalization error bound, which is determined by the strength of individual discriminators and the correlations among them. Hence, a discriminative forest can provide very large capacity without any risk of overfitting, which subsequently improves the generative diversity. With the discriminative forest framework, we significantly improved the performance of AutoGAN with a new record FID of 19.27 from 30.71 on STL10 and improved the performance of StyleGAN2-ADA with a new record FID of 6.87 from 9.22 on LSUN-cat.
引用
收藏
页码:11338 / 11345
页数:8
相关论文
共 50 条
  • [31] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [32] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [33] Font Creation Using Class Discriminative Deep Convolutional Generative Adversarial Networks
    Abe, Kotaro
    Iwana, Brian Kenji
    Holmer, Viktor Gosta
    Uchida, Seiichi
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 232 - 237
  • [34] CDGAN: Cyclic Discriminative Generative Adversarial Networks for image-to-image transformation
    Babu, Kancharagunta Kishan
    Dubey, Shiv Ram
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 82
  • [35] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [36] Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry
    Kao, Po-Yu
    Yang, Ya-Chu
    Chiang, Wei-Yin
    Hsiao, Jen-Yueh
    Cao, Yudong
    Aliper, Alex
    Ren, Feng
    Aspuru-Guzik, Alan
    Zhavoronkov, Alex
    Hsieh, Min-Hsiu
    Lin, Yen-Chu
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (11) : 3307 - 3318
  • [37] Generative Attribute Controller with Conditional Filtered Generative Adversarial Networks
    Kaneko, Takuhiro
    Hiramatsu, Kaoru
    Kashino, Kunio
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7006 - 7015
  • [38] CHALLENGES IN GENERATIVE MODELING AND FUNCTIONING NATURE OF GENERATIVE ADVERSARIAL NETWORKS
    Sripada, Naresh Kumar
    Ismail, Mohammed B.
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (06): : 83 - 91
  • [39] Exploring generative adversarial networks and adversarial training
    Sajeeda A.
    Hossain B.M.M.
    Int. J. Cogn. Comp. Eng., (78-89): : 78 - 89
  • [40] Attribute-Aware Generative Design With Generative Adversarial Networks
    Yuan, Chenxi
    Moghaddam, Mohsen
    IEEE ACCESS, 2020, 8 : 190710 - 190721