Deep Spectral Spatial Feature Enhancement Through Transformer for Hyperspectral Image Classification

被引:1
|
作者
Khan, Rahim [1 ]
Arshad, Tahir [2 ]
Ma, Xuefei [1 ]
Chen, Wang [1 ]
Zhu, Haifeng [1 ]
Wu, Yanni [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[3] Xian Univ Arts & Sci, Sci Res Dept, Xian 710071, Peoples R China
关键词
Feature extraction; Transformers; Hyperspectral imaging; Computational modeling; Three-dimensional displays; Logic gates; Kernel; Attention module; convolutional neural network (CNN); hyperspectral image (HSI) classification; vision transformer;
D O I
10.1109/LGRS.2024.3424986
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) data has a wide range of spectral information that is valuable for numerous tasks. HSI data encounters some challenges, such as small training samples, data scarcity, and redundant information. Researchers present numerous investigations to address these challenges, with convolutional neural networks (CNNs) being extensively used in HSI classification because of their capacity to extract features from data. Moreover, vision transformers have demonstrated their ability in the remote sensing field. However, the training of these models required a significant amount of labeled training data. We proposed a vision-based transformer module that consists of a multiscale feature extractor to extract joint spectral-spatial low-level, shallow features. For high-level semantic feature extraction, we proposed a regional attention mechanism with a spatially gated module. We tested the proposed model on four publicly available HSI datasets: Pavia University, Salinas, Xuzhou, Loukia, and the Houston 2013 dataset. Using only 1%, 1%, 1%, 2%, and 2% of the training samples from the five datasets, we achieved the best classification in terms of overall accuracy (OA), average accuracy (AA), and Kappa coefficient.
引用
收藏
页码:1 / 1
页数:5
相关论文
共 50 条
  • [31] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK
    Tang, Xu
    Meng, Fanbo
    Ma, Jingjing
    Zhang, Xiangrong
    Liu, Fang
    Peng, Qunnie
    Jiao, Licheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 838 - 841
  • [32] Multiscale spectral-spatial feature learning for hyperspectral image classification
    Sohail, Muhammad
    Chen, Zhao
    Yang, Bin
    Liu, Guohua
    DISPLAYS, 2022, 74
  • [33] Adaptive Spatial-Spectral Feature Learning for Hyperspectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Liu, Yang
    Bao, Jie
    IEEE ACCESS, 2019, 7 : 61534 - 61547
  • [34] Hyperspectral Image Classification Employing Spatial-Spectral Feature Supported by 3D Convolution and Transformer
    He, Guang
    Wu, Tianjun
    Computer Engineering and Applications, 61 (02): : 259 - 272
  • [35] Hyperspectral Image Classification Based on Spectral Spatial Feature Extraction and Deep Rotation Forest Ensemble with AdaBoost
    Deng, Lindiao
    Cao, Guo
    Xu, Ling
    Xu, Hao
    Pan, Qikun
    Ding, Lanwei
    Shang, Yanfeng
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [36] Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
    Zhao, Wenzhi
    Du, Shihong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4544 - 4554
  • [37] Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning
    Han, Yanling
    Gao, Yi
    Zhang, Yun
    Wang, Jing
    Yang, Shuhu
    REMOTE SENSING, 2019, 11 (18)
  • [38] Spatial-spectral feature classification of hyperspectral image using a pretrained deep convolutional neural network
    Liu, Bing
    Yu, Anzhu
    Zuo, Xibing
    Xue, Zhixiang
    Gao, Kuiliang
    Guo, Wenyue
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 385 - 397
  • [39] Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification
    Hu, Wen-Shuai
    Li, Heng-Chao
    Pan, Lei
    Li, Wei
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 4237 - 4250
  • [40] Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    Lizhe Wang
    Jiabin Zhang
    Peng Liu
    Kim-Kwang Raymond Choo
    Fang Huang
    Soft Computing, 2017, 21 : 213 - 221