Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification

被引:129
|
作者
Hu, Wen-Shuai [1 ]
Li, Heng-Chao [1 ]
Pan, Lei [1 ]
Li, Wei [2 ]
Tao, Ran [2 ]
Du, Qian [3 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
来源
基金
中国国家自然科学基金;
关键词
Classification; convolutional long short-term memory (ConvLSTM); deep learning; feature extraction; hyperspectral image (HSI);
D O I
10.1109/TGRS.2019.2961947
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, deep learning has presented a great advance in the hyperspectral image (HSI) classification. Particularly, long short-term memory (LSTM), as a special deep learning structure, has shown great ability in modeling long-term dependencies in the time dimension of video or the spectral dimension of HSIs. However, the loss of spatial information makes it quite difficult to obtain better performance. In order to address this problem, two novel deep models are proposed to extract more discriminative spatial & x2013;spectral features by exploiting the convolutional LSTM (ConvLSTM). By taking the data patch in a local sliding window as the input of each memory cell band by band, the 2-D extended architecture of LSTM is considered for building the spatial & x2013;spectral ConvLSTM 2-D neural network (SSCL2DNN) to model long-range dependencies in the spectral domain. To better preserve the intrinsic structure information of the hyperspectral data, the spatial & x2013;spectral ConvLSTM 3-D neural network (SSCL3DNN) is proposed by extending LSTM to the 3-D version for further improving the classification performance. The experiments, conducted on three commonly used HSI data sets, demonstrate that the proposed deep models have certain competitive advantages and can provide better classification performance than the other state-of-the-art approaches.
引用
收藏
页码:4237 / 4250
页数:14
相关论文
共 50 条
  • [1] Multiscale Spatial-Spectral Feature Extraction Network for Hyperspectral Image Classification
    Ye, Zhen
    Li, Cuiling
    Liu, Qingxin
    Bai, Lin
    Fowler, James E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4640 - 4652
  • [2] Spatial-spectral feature classification of hyperspectral image using a pretrained deep convolutional neural network
    Liu, Bing
    Yu, Anzhu
    Zuo, Xibing
    Xue, Zhixiang
    Gao, Kuiliang
    Guo, Wenyue
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 385 - 397
  • [3] Semisupervised Spatial-Spectral Feature Extraction With Attention Mechanism for Hyperspectral Image Classification
    Pu, Chunyu
    Huang, Hong
    Shi, Xu
    Wang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Shallow-to-Deep Spatial-Spectral Feature Enhancement for Hyperspectral Image Classification
    Zhou, Lijian
    Ma, Xiaoyu
    Wang, Xiliang
    Hao, Siyuan
    Ye, Yuanxin
    Zhao, Kun
    REMOTE SENSING, 2023, 15 (01)
  • [5] Adaptive Spatial-Spectral Feature Learning for Hyperspectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Liu, Yang
    Bao, Jie
    IEEE ACCESS, 2019, 7 : 61534 - 61547
  • [6] A SUBPIXEL SPATIAL-SPECTRAL FEATURE MINING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Xiang
    Li, Jun
    Zhang, Yanning
    Li, Shutao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8476 - 8479
  • [7] CLASSIFICATION OF HYPERSPECTRAL IMAGE VIA SPATIAL-SPECTRAL MANIFOLD RECONSTRUCTION
    Yang, Yaqiong
    Huang, Hong
    Luo, Fulin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2442 - 2445
  • [8] PASSNet: A Spatial-Spectral Feature Extraction Network With Patch Attention Module for Hyperspectral Image Classification
    Ji, Renjie
    Tan, Kun
    Wang, Xue
    Pan, Chen
    Xin, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [9] Three-Dimensional Spatial-Spectral Filtering Based Feature Extraction for Hyperspectral Image Classification
    Akyurek, Hasan Ali
    Kocer, Baris
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2017, 17 (02) : 95 - 102
  • [10] SPATIAL-SPECTRAL FEATURE EXTRACTION ON HYPERSPECTRAL IMAGERY
    Kaufman, J.
    Weinheimer, J. J.
    Celenk, M.
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,