Deep Spectral Spatial Feature Enhancement Through Transformer for Hyperspectral Image Classification

被引:1
|
作者
Khan, Rahim [1 ]
Arshad, Tahir [2 ]
Ma, Xuefei [1 ]
Chen, Wang [1 ]
Zhu, Haifeng [1 ]
Wu, Yanni [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[3] Xian Univ Arts & Sci, Sci Res Dept, Xian 710071, Peoples R China
关键词
Feature extraction; Transformers; Hyperspectral imaging; Computational modeling; Three-dimensional displays; Logic gates; Kernel; Attention module; convolutional neural network (CNN); hyperspectral image (HSI) classification; vision transformer;
D O I
10.1109/LGRS.2024.3424986
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) data has a wide range of spectral information that is valuable for numerous tasks. HSI data encounters some challenges, such as small training samples, data scarcity, and redundant information. Researchers present numerous investigations to address these challenges, with convolutional neural networks (CNNs) being extensively used in HSI classification because of their capacity to extract features from data. Moreover, vision transformers have demonstrated their ability in the remote sensing field. However, the training of these models required a significant amount of labeled training data. We proposed a vision-based transformer module that consists of a multiscale feature extractor to extract joint spectral-spatial low-level, shallow features. For high-level semantic feature extraction, we proposed a regional attention mechanism with a spatially gated module. We tested the proposed model on four publicly available HSI datasets: Pavia University, Salinas, Xuzhou, Loukia, and the Houston 2013 dataset. Using only 1%, 1%, 1%, 2%, and 2% of the training samples from the five datasets, we achieved the best classification in terms of overall accuracy (OA), average accuracy (AA), and Kappa coefficient.
引用
收藏
页码:1 / 1
页数:5
相关论文
共 50 条
  • [21] MultiScale spectral-spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET IMAGE PROCESSING, 2024, 18 (13) : 4328 - 4340
  • [22] Spectral-Spatial-Frequency Transformer Network for Hyperspectral Image Classification
    Qiao, Xin
    Huang, Weimin
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [23] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [24] Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Yan
    Tu, Bing
    Liu, Bo
    Chen, Yunyun
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] Hyperspectral Image Spectral-Spatial Classification Method Based on Deep Adaptive Feature Fusion
    Mu, Caihong
    Liu, Yijin
    Liu, Yi
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [26] Multi-type spectral spatial feature for hyperspectral image classification
    Yuan, Yuan
    Jin, Mingxin
    NEUROCOMPUTING, 2022, 492 : 637 - 650
  • [27] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [28] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [29] A SUBPIXEL SPATIAL-SPECTRAL FEATURE MINING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Xiang
    Li, Jun
    Zhang, Yanning
    Li, Shutao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8476 - 8479
  • [30] Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    REMOTE SENSING, 2019, 11 (13)