Construction of optimal spectral methods in phase retrieval

被引:0
|
作者
Maillard, Antoine [1 ]
Krzakala, Florent [2 ]
Lu, Yue M. [3 ]
Zdeborova, Lenka [4 ]
机构
[1] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,ENS, Paris, France
[2] Ecole Polytech Fed Lausanne, IdePHICS Lab, Lausanne, Switzerland
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Ecole Polytech Fed Lausanne, SPOC Lab, Lausanne, Switzerland
基金
欧盟地平线“2020”;
关键词
Phase retrieval; spectral methods; message-passing algorithms; RECOVERY; MATRIX; LIMITS; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the phase retrieval problem, in which the observer wishes to recover a n-dimensional real or complex signal X-star from the (possibly noisy) observation of vertical bar Phi X-star vertical bar, in which Phi is a matrix of size m x n. We consider a high-dimensional setting where n, m -> infinity with m/n = O(1), and a large class of (possibly correlated) random matrices Phi and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal X-star which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the Bethe Hessian, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix Phi, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).
引用
收藏
页码:693 / 720
页数:28
相关论文
共 50 条
  • [21] Group delay and spectral phase retrieval of light pulses by spectral intensity measurements
    Cuadrado-Laborde, C.
    Cruz, J. L.
    Diez, A.
    Andres, M. V.
    OPTICS COMMUNICATIONS, 2022, 522
  • [22] METHODS FOR PHASE RETRIEVAL IN THE INTERMEDIATE AND NEAR FIELD
    Gureyev, T. E.
    Pogany, A.
    Paganin, D. M.
    Mayo, S. C.
    Stevenson, A. W.
    Wilkins, S. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C198 - C198
  • [23] Phase retrieval methods for optical imaging and metrology
    Pedrini, G.
    Faridian, A.
    Gao, P.
    Naik, D.
    Singh, A.
    Osten, W.
    Takeda, M.
    2014 13TH WORKSHOP ON INFORMATION OPTICS (WIO), 2014,
  • [24] COMPARISON OF PHASE RETRIEVAL METHODS IN COMPUTER EXPERIMENTS
    NAKAJIMA, N
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1988, 27 (02): : 244 - 252
  • [25] PHASE RETRIEVAL BY MONTE-CARLO METHODS
    NIETOVESPERINAS, M
    MENDEZ, JA
    OPTICS COMMUNICATIONS, 1986, 59 (04) : 249 - 254
  • [26] Phase Retrieval Methods for Single Interferogram with Large Gradient Phase
    Ye Mingzhe
    Wang Shaopu
    Hu Yao
    Hao Qun
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (05):
  • [27] COMPARISON OF PHASE-CODING METHODS FOR ABSOLUTE PHASE RETRIEVAL
    Zhou, Dawei
    Wu, Jun
    Chen, Xiangcheng
    Zuo, Zhaolu
    Kong, Deyi
    MECHATRONIC SYSTEMS AND CONTROL, 2022, 50 (01): : 37 - 48
  • [28] Phase Retrieval Methods for Single Interferogram with Large Gradient Phase
    Ye M.
    Wang S.
    Hu Y.
    Hao Q.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (05):
  • [29] Stochastic modeling and methods in optimal portfolio construction
    Zariphopoulou, Thaleia
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 1163 - 1186
  • [30] Impact of computational methods and spectral models on the retrieval of optical properties via spectral optimization
    Huang, Shaohui
    Li, Yonghong
    Shang, Shaoping
    Shang, Shaoling
    OPTICS EXPRESS, 2013, 21 (05): : 6257 - 6273