Construction of optimal spectral methods in phase retrieval

被引:0
|
作者
Maillard, Antoine [1 ]
Krzakala, Florent [2 ]
Lu, Yue M. [3 ]
Zdeborova, Lenka [4 ]
机构
[1] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,ENS, Paris, France
[2] Ecole Polytech Fed Lausanne, IdePHICS Lab, Lausanne, Switzerland
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Ecole Polytech Fed Lausanne, SPOC Lab, Lausanne, Switzerland
基金
欧盟地平线“2020”;
关键词
Phase retrieval; spectral methods; message-passing algorithms; RECOVERY; MATRIX; LIMITS; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the phase retrieval problem, in which the observer wishes to recover a n-dimensional real or complex signal X-star from the (possibly noisy) observation of vertical bar Phi X-star vertical bar, in which Phi is a matrix of size m x n. We consider a high-dimensional setting where n, m -> infinity with m/n = O(1), and a large class of (possibly correlated) random matrices Phi and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal X-star which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the Bethe Hessian, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix Phi, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).
引用
收藏
页码:693 / 720
页数:28
相关论文
共 50 条
  • [31] Optimal Defocus for Phase Diversity Wave Front Retrieval
    Bailen, F. J.
    Orozco Suarez, D.
    Blanco Rodriguez, J.
    del Toro Iniesta, J. C.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 263 (01):
  • [32] Wirtinger Flow Method With Optimal Stepsize for Phase Retrieval
    Jiang, Xue
    Rajan, Sreeraman
    Liu, Xingzhao
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1627 - 1631
  • [33] Near-Optimal Phase Retrieval of Sparse Vectors
    Bandeira, Afonso S.
    Mixon, Dustin G.
    WAVELETS AND SPARSITY XV, 2013, 8858
  • [34] Phase retrieval from spectral interferograms including a stationary-phase point
    Hlubina, Petr
    Olszewski, Jacek
    OPTICS COMMUNICATIONS, 2012, 285 (24) : 4733 - 4738
  • [35] Benchmarking accurate spectral phase retrieval of single attosecond pulses
    Wei, Hui
    Le, Anh-Thu
    Morishita, Toru
    Yu, Chao
    Lin, C. D.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [36] The phase retrieval problem: a spectral parameter power series approach
    Víctor Barrera-Figueroa
    Herminio Blancarte
    Vladislav V. Kravchenko
    Journal of Engineering Mathematics, 2014, 85 : 179 - 209
  • [37] Phase retrieval from the spectral interferograms by windowed Fourier transform
    Hlubina, P.
    Lunacek, J.
    Ciprian, D.
    Chlebus, R.
    Lunackova, M.
    OPTICAL MICRO- AND NANOMETROLOGY IN MICROSYSTEMS TECHNOLOGY II, 2008, 6995
  • [38] Spectral phase and amplitude retrieval and compensation technique for measurement of pulses
    Motz, Alyssa M. Allende
    Squier, Jeff A.
    Durfee, Charles G.
    Adams, Daniel E.
    OPTICS LETTERS, 2019, 44 (08) : 2085 - 2088
  • [39] The phase retrieval problem: a spectral parameter power series approach
    Barrera-Figueroa, Victor
    Blancarte, Herminio
    Kravchenko, Vladislav V.
    JOURNAL OF ENGINEERING MATHEMATICS, 2014, 85 (01) : 179 - 209
  • [40] Spectral Phase and Amplitude Retrieval and Compensation for Random Access Microscopy
    Motz, Alyssa M. Allende
    Durfee, Charles G.
    Squier, Jeff A.
    Adams, Daniel E.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,