Predicting environmental impacts of smallholder wheat production by coupling life cycle assessment and machine learning

被引:1
|
作者
Yu, Chunxiao [1 ]
Xu, Gang [1 ,3 ]
Cai, Ming [2 ]
Li, Yuan [1 ]
Wang, Lijia [1 ]
Zhang, Yan [1 ]
Lin, Huilong [1 ]
机构
[1] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Engn Res Ctr Grassland Ind, Minist Educ,State Key Lab Herbage Improvement & Gr, Lanzhou 730020, Peoples R China
[2] Yunnan Acad Grassland & Anim Sci, Kunming 650212, Peoples R China
[3] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Smallholder; Policy making; Climate change; Farming practice; Machine learning; Life cycle assessment; Wheat; NONPOINT-SOURCE POLLUTION; LAND FRAGMENTATION; CLIMATE-CHANGE; AIR-POLLUTION; CHINA; FARMERS; ADAPTATION; PM2.5; PARTICIPATION; LIVELIHOODS;
D O I
10.1016/j.scitotenv.2024.171097
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wheat grain production is a vital component of the food supply produced by smallholder farms but faces significant threats from climate change. This study evaluated eight environmental impacts of wheat production using life cycle assessment based on survey data from 274 households, then built random forest models with 21 input features to contrast the environmental responses of different farming practices across three shared socioeconomic pathways (SSPs), spanning from 2024 to 2100. The results indicate significant environmental repercussions. Compared to the baseline period of 2018-2020, a similar upward trend in environmental impacts is observed, showing an average annual growth rate of 5.88 % (ranging from 0.45 to 18.56 %) under the sustainable pathway (SSP119) scenario; 5.90 % (ranging from 1.00 to 18.15 %) for the intermediate development pathway (SSP245); and 6.22 % (ranging from 1.16 to 17.74 %) under the rapid economic development pathway (SSP585). Variation in rainfall is identified as the primary driving factor of the increased environmental impacts, whereas its relationship with rising temperatures is not significant. The results suggest adopting farming practices as a vital strategy for smallholder farms to mitigate climate change impacts. Emphasizing appropriate fertilizer application and straw recycling can significantly reduce the environmental footprint of wheat production. Standardized fertilization could reduce the environmental impact index by 11.10 to 47.83 %, while straw recycling might decrease respiratory inorganics and photochemical oxidant formation potential by over 40 %. Combined, these approaches could lower the impact index by 12.31 to 63.38 %. The findings highlight the importance of adopting enhanced farming practices within smallholder farming systems in the context of climate change. Spotlights: center dot China's smallholder wheat farming is increasingly exposed to climate threats, risking resource depletion and pollution center dot Increasing eco-impacts of smallholder wheat farming could be mitigated by regulated fertilizer use and straw recycling center dot Life cycle assessment combined with machine learning targets future environmental impacts in dynamic climate scenarios center dot The study offers actionable policy advice for sustainable smallholder wheat farming practices center dot Future work may probe machine learning's role in forecasting smallholder production behaviors and farming decision aid
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Environmental impacts of bicycle production in Bangladesh: a cradle-to-grave life cycle assessment approach
    Roy, Papon
    Miah, Md. Danesh
    Zafar, Md. Tasneem
    SN APPLIED SCIENCES, 2019, 1 (07):
  • [42] EVALUATION OF ENVIRONMENTAL IMPACTS AND GHG OF PALM POLYOL PRODUCTION USING LIFE CYCLE ASSESSMENT APPROACH
    Zolkarnain, Noorazah
    Yusoff, Sumiani
    Subramaniam, Vijaya
    Abd Maurad, Zulina
    Abu Bakar, Zailan
    Ghazali, Razmah
    Abu Hassan, Hazimah
    JOURNAL OF OIL PALM RESEARCH, 2015, 27 (02): : 144 - 155
  • [43] Environmental impacts of bicycle production in Bangladesh: a cradle-to-grave life cycle assessment approach
    Papon Roy
    Md. Danesh Miah
    Md. Tasneem Zafar
    SN Applied Sciences, 2019, 1
  • [44] Environmental Impacts Associated with Intensive Production in Pig Farms in Mexico through Life Cycle Assessment
    Rafael Giraldi-Diaz, Mario
    Castillo-Gonzalez, Eduardo
    De Medina-Salas, Lorena
    Velasquez-De la Cruz, Raul
    Daniel Huerta-Silva, Hector
    SUSTAINABILITY, 2021, 13 (20)
  • [45] Environmental Impacts of the Brazilian Egg Industry: Life Cycle Assessment of the Battery Cage Production System
    Maciel, Fabiane de Fatima
    Gates, Richard Stephen
    Tinoco, Ilda de Fatima Ferreira
    Pelletier, Nathan
    Ibarburu-Blanc, Maro A.
    Renato, Natalia dos Santos
    de Sousa, Fernanda Campos
    Andrade, Rafaella Resende
    Silva, Guilherme Moreira de Melo
    Becciolini, Valentina
    ANIMALS, 2024, 14 (06):
  • [46] Evaluation of environmental impacts of cotton polo shirt production in Bangladesh using life cycle assessment
    Islam, Shafiqul
    Hasan, A. K. M. Mehedi
    Bhuiyan, Muhammad Abdur Rahman
    Bhat, Gajanan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 926
  • [47] Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review
    Andres Salas, Daniel
    Diego Ramirez, Angel
    Raul Rodriguez, Carlos
    Marx Petroche, Daniel
    Jael Boero, Andrea
    Duque-Rivera, Jorge
    JOURNAL OF CLEANER PRODUCTION, 2016, 113 : 114 - 122
  • [48] Environmental Impacts of Egg Production from a Life Cycle Perspective
    Guillaume, Aurore
    Hubatova-Vackova, Anna
    Koci, Vladimir
    AGRICULTURE-BASEL, 2022, 12 (03):
  • [49] Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles
    Gao, Lin
    Winfield, Zach C.
    ENERGIES, 2012, 5 (03) : 605 - 620
  • [50] Life Cycle Assessment to support the quantification of the environmental impacts of an event
    Toniolo, Sara
    Mazzi, Anna
    Fedele, Andrea
    Aguiari, Filippo
    Scipioni, Antonio
    ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2017, 63 : 12 - 22