Visualizing entanglement in multiqubit systems

被引:1
|
作者
Bley, Jonas [1 ]
Rexigel, Eva [1 ]
Arias, Alda [1 ,2 ]
Longen, Nikolas [3 ]
Krupp, Lars [3 ,4 ]
Kiefer-Emmanouilidis, Maximilian [1 ,3 ,4 ]
Lukowicz, Paul [3 ,4 ]
Donhauser, Anna [2 ]
Kuechemann, Stefan [2 ]
Kuhn, Jochen [2 ]
Widera, Artur [1 ]
机构
[1] Res Ctr OPTIMAS, Dept Phys, RPTU Kaiserslautern Landau, D-67663 Kaiserslautern, Germany
[2] Ludwig Maximilians Univ Munchen, Fac Phys, Chair Phys Educ, D-80539 Munich, Germany
[3] RPTU Kaiserslautern Landau, Dept Comp Sci & Res Initiat QC AI, D-67663 Kaiserslautern, Germany
[4] German Res Ctr Artificial Intelligence, Embedded Intelligence, Kaiserslautern, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
PRODUCT OPERATOR-FORMALISM; QUANTUM; TELEPORTATION;
D O I
10.1103/PhysRevResearch.6.023077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the field of quantum information science and technology, the representation and visualization of quantum states and related processes are essential for both research and education. In this context, a focus lies especially on ensembles of few qubits. There exist many powerful representations for single-qubit and multiqubit systems, such as the famous Bloch sphere and generalizations. Here, we utilize the dimensional circle notation as a representation of such ensembles, adapting the so-called circle notation of qubits and the idea of representing the n-particle system in an n-dimensional space. We show that the mathematical conditions for separability lead to symmetry conditions of the quantum state visualized, offering a new perspective on entanglement in few-qubit systems and therefore on various quantum algorithms. In this way, dimensional notations promise significant potential for conveying nontrivial quantum entanglement properties and processes in few-qubit systems to a broader audience, and could enhance understanding of these concepts as a bridge between intuitive quantum insight and formal mathematical descriptions.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Scaling laws for the decay of multiqubit entanglement
    Aolita, L.
    Chaves, R.
    Cavalcanti, D.
    Acin, A.
    Davidovich, L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (08)
  • [32] Multiqubit entanglement of a general input state
    Behrman, Elizabeth C.
    Steck, James E.
    Quantum Information and Computation, 2013, 13 (1-2): : 0036 - 0053
  • [33] Residual effect on the robustness of multiqubit entanglement
    Zhao, Bao-Kui
    Deng, Fu-Guo
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [34] Persistent homology analysis of multiqubit entanglement
    Mengoni, Ricardo
    Di Pierro, Alessandra
    Memarzadeh, Leleh
    Mancini, Stefano
    Quantum Information and Computation, 2020, 20 (5-6): : 375 - 399
  • [35] MULTIQUBIT ENTANGLEMENT OF A GENERAL INPUT STATE
    Behrman, Elizabeth C.
    Steck, James E.
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (1-2) : 36 - 53
  • [37] Dynamics and multiqubit entanglement in distant resonators
    Waseem, Muhammad
    Khan, Muhammad Nehal
    Qamar, Shahid
    PHYSICA SCRIPTA, 2020, 95 (06)
  • [38] General monogamy relation of multiqubit systems in terms of squared Renyi-α entanglement
    Song, Wei
    Bai, Yan-Kui
    Yang, Mou
    Yang, Ming
    Cao, Zhuo-Liang
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [39] Visualizing multiqubit correlations using the Wigner function
    Todd Tilma
    Mario A. Ciampini
    Mark J. Everitt
    W. J. Munro
    Paolo Mataloni
    Kae Nemoto
    Marco Barbieri
    The European Physical Journal D, 2022, 76
  • [40] Visualizing multiqubit correlations using the Wigner function
    Tilma, Todd
    Ciampini, Mario A.
    Everitt, Mark J.
    Munro, W. J.
    Mataloni, Paolo
    Nemoto, Kae
    Barbieri, Marco
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (05):