Negativity and tight constraints of multiqubit entanglement

被引:37
|
作者
Kim, Jeong San [1 ,2 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, Yongin 446701, Gyeonggi Do, South Korea
[2] Kyung Hee Univ, Inst Nat Sci, Yongin 446701, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevA.97.012334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We provide a characterization of multiqubit entanglement constraints in terms of negativity. By using the square of convex-roof extended negativity (SCREN) and the Hamming weight of the binary vector related with the distribution of subsystems, we show that the alpha th power of SCREN provides a class of monogamy inequalities of multiqubit entanglement in a tight way for alpha >= 1. We further show that the beta th power of SCREN also provides a class of tight polygamy inequalities for 0 <= beta <= 1.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Tighter constraints of multiqubit entanglement for negativity
    Yang, Long-Mei
    Chen, Bin
    Fei, Shao-Ming
    Wang, Zhi-Xi
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [2] Tighter constraints of multiqubit entanglement for negativity
    Long-Mei Yang
    Bin Chen
    Shao-Ming Fei
    Zhi-Xi Wang
    [J]. Quantum Information Processing, 2020, 19
  • [3] Tighter Constraints of Multiqubit Entanglement
    Yang, Long-Mei
    Chen, Bin
    Fei, Shao-Ming
    Wang, Zhi-Xi
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (05) : 545 - 554
  • [4] Tighter Constraints of Multiqubit Entanglement
    杨龙妹
    陈斌
    费少明
    王志玺
    [J]. Communications in Theoretical Physics, 2019, 71 (05) : 545 - 554
  • [5] Tsallis entropy and entanglement constraints in multiqubit systems
    Kim, Jeong San
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):
  • [6] Tighter constraints of multiqubit entanglement in terms of unified entropy
    Ren, Ya-Ya
    Wang, Zhi-Xi
    Fei, Shao-Ming
    [J]. LASER PHYSICS LETTERS, 2021, 18 (11)
  • [7] Tighter constraints of multiqubit entanglement in terms of Renyi-α entropy
    Guo, Meng-Li
    Li, Bo
    Wang, Zhi-Xi
    Fei, Shao-Ming
    [J]. CHINESE PHYSICS B, 2020, 29 (07)
  • [8] Tighter constraints of multiqubit entanglement in terms of Rényi-α entropy
    郭梦丽
    李波
    王志玺
    费少明
    [J]. Chinese Physics B, 2020, (07) : 297 - 302
  • [9] Multiqubit entanglement witness
    Chen, Lin
    Chen, Yi-Xin
    [J]. PHYSICAL REVIEW A, 2007, 76 (02):
  • [10] Robustness of multiqubit entanglement
    Fedichkin, Leonid
    Fedorova, Arkady
    Privman, Vladimir
    [J]. QUANTUM INFORMATION AND COMPUTATION IV, 2006, 6244