Visualizing entanglement in multiqubit systems

被引:1
|
作者
Bley, Jonas [1 ]
Rexigel, Eva [1 ]
Arias, Alda [1 ,2 ]
Longen, Nikolas [3 ]
Krupp, Lars [3 ,4 ]
Kiefer-Emmanouilidis, Maximilian [1 ,3 ,4 ]
Lukowicz, Paul [3 ,4 ]
Donhauser, Anna [2 ]
Kuechemann, Stefan [2 ]
Kuhn, Jochen [2 ]
Widera, Artur [1 ]
机构
[1] Res Ctr OPTIMAS, Dept Phys, RPTU Kaiserslautern Landau, D-67663 Kaiserslautern, Germany
[2] Ludwig Maximilians Univ Munchen, Fac Phys, Chair Phys Educ, D-80539 Munich, Germany
[3] RPTU Kaiserslautern Landau, Dept Comp Sci & Res Initiat QC AI, D-67663 Kaiserslautern, Germany
[4] German Res Ctr Artificial Intelligence, Embedded Intelligence, Kaiserslautern, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
PRODUCT OPERATOR-FORMALISM; QUANTUM; TELEPORTATION;
D O I
10.1103/PhysRevResearch.6.023077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the field of quantum information science and technology, the representation and visualization of quantum states and related processes are essential for both research and education. In this context, a focus lies especially on ensembles of few qubits. There exist many powerful representations for single-qubit and multiqubit systems, such as the famous Bloch sphere and generalizations. Here, we utilize the dimensional circle notation as a representation of such ensembles, adapting the so-called circle notation of qubits and the idea of representing the n-particle system in an n-dimensional space. We show that the mathematical conditions for separability lead to symmetry conditions of the quantum state visualized, offering a new perspective on entanglement in few-qubit systems and therefore on various quantum algorithms. In this way, dimensional notations promise significant potential for conveying nontrivial quantum entanglement properties and processes in few-qubit systems to a broader audience, and could enhance understanding of these concepts as a bridge between intuitive quantum insight and formal mathematical descriptions.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Stronger Monogamy Relations of Fidelity Based Entanglement Measures in Multiqubit Systems
    Shen, Zhong-Xi
    Yang, Kang-Kang
    Lu, Yu
    Wang, Zhi-Xi
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (06)
  • [22] General monogamy of Tsallis q-entropy entanglement in multiqubit systems
    Luo, Yu
    Tian, Tian
    Shao, Lian-He
    Li, Yongming
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [23] ENTANGLEMENT VERSUS ENERGY IN MULTIQUBIT ENTANGLEMENT DYNAMICS PROBLEM
    Han, Feng
    Xia, Yun-Jie
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (03) : 661 - 667
  • [24] Multiqubit entanglement due to quantum gravity
    Liu, Shaomin
    Chen, Lin
    Liang, Mengfan
    PHYSICS LETTERS A, 2024, 493
  • [25] Tighter constraints of multiqubit entanglement for negativity
    Yang, Long-Mei
    Chen, Bin
    Fei, Shao-Ming
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [26] Genuine multiqubit entanglement and controlled teleportation
    Man, Zhong-Xiao
    Xia, Yun-Jie
    An, Nguyen Ba
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [27] PERSISTENT HOMOLOGY ANALYSIS OF MULTIQUBIT ENTANGLEMENT
    Mengoni, Ricardo
    Di Pierro, Alessandra
    Memarzadeh, Leleh
    Mancini, Stefano
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (5-6) : 375 - 399
  • [28] Tighter monogamy inequalities of multiqubit entanglement
    Li, Jia-Yi
    Shen, Zhong-Xi
    Fei, Shao-Ming
    LASER PHYSICS LETTERS, 2023, 20 (10)
  • [29] Attractors, Black Holes and Multiqubit Entanglement
    Levay, Peter
    ATTRACTOR MECHANISM, 2010, 134 : 85 - 164
  • [30] Tighter constraints of multiqubit entanglement for negativity
    Long-Mei Yang
    Bin Chen
    Shao-Ming Fei
    Zhi-Xi Wang
    Quantum Information Processing, 2020, 19