SURER: Structure-Adaptive Unified Graph Neural Network for Multi-View Clustering

被引:0
|
作者
Wang, Jing [1 ]
Feng, Songhe [1 ]
Lyu, Gengyu [2 ]
Yuan, Jiazheng [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Big Data & Artificial Intelligence Transp, Beijing, Peoples R China
[2] Beijing Univ Technol, Engn Res Ctr Intelligence Percept & Autonomous Co, Minist Educ, Beijing, Peoples R China
[3] Beijing Open Univ, Coll Sci & Technol, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Multi-view Graph Clustering (DMGC) aims to partition instances into different groups using the graph information extracted from multi-view data. The mainstream framework of DMGC methods applies graph neural networks to embed structure information into the view-specific representations and fuse them for the consensus representation. However, on one hand, we find that the graph learned in advance is not ideal for clustering as it is constructed by original multi-view data and localized connecting. On the other hand, most existing methods learn the consensus representation in a late fusion manner, which fails to propagate the structure relations across multiple views. Inspired by the observations, we propose a Structure-adaptive Unified gRaph nEural network for multi-view clusteRing (SURER), which can jointly learn a heterogeneous multi-view unified graph and robust graph neural networks for multi-view clustering. Specifically, we first design a graph structure learning module to refine the original view-specific attribute graphs, which removes false edges and discovers the potential connection. According to the view-specific refined attribute graphs, we integrate them into a unified heterogeneous graph by linking the representations of the same sample from different views. Furthermore, we use the unified heterogeneous graph as the input of the graph neural network to learn the consensus representation for each instance, effectively integrating complementary information from various views. Extensive experiments on diverse datasets demonstrate the superior effectiveness of our method compared to other state-of-the-art approaches.
引用
收藏
页码:15520 / 15527
页数:8
相关论文
共 50 条
  • [21] Multi-view Contrastive Graph Clustering
    Pan, Erlin
    Kang, Zhao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [22] Metric Multi-View Graph Clustering
    Tan, Yuze
    Liu, Yixi
    Wu, Hongjie
    Lv, Jiancheng
    Huang, Shudong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9962 - 9970
  • [23] Multi-View Comprehensive Graph Clustering
    Mei, Yanying
    Ren, Zhenwen
    Wu, Bin
    Yang, Tao
    Shao, Yanhua
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3279 - 3288
  • [24] Multi-View Attributed Graph Clustering
    Lin, Zhiping
    Kang, Zhao
    Zhang, Lizong
    Tian, Ling
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1872 - 1880
  • [25] Measuring Diversity in Graph Learning: A Unified Framework for Structured Multi-View Clustering
    Huang, Shudong
    Tsang, Ivor W.
    Xu, Zenglin
    Lv, Jiancheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (12) : 5869 - 5883
  • [26] Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Cai, Xiao-Sha
    Wang, Chang-Dong
    He, Chaobo
    Tang, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11436 - 11447
  • [27] Individuality Meets Commonality: A Unified Graph Learning Framework for Multi-View Clustering
    Gu, Zhibin
    Feng, Songhe
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (01)
  • [28] Consistency Meets Inconsistency: A Unified Graph Learning Framework for Multi-view Clustering
    Liang, Youwei
    Huang, Dong
    Wang, Chang-Dong
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1204 - 1209
  • [29] Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering
    Wu, Jianlong
    Xie, Xingxu
    Nie, Liqiang
    Lin, Zhouchen
    Zha, Hongbin
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6388 - 6395
  • [30] Multi-View Clustering Based on Adaptive Similarity Graph Joint Optimization
    Ji X.
    Shi M.-Y.
    Zhou P.
    Yao S.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (02): : 310 - 322