SURER: Structure-Adaptive Unified Graph Neural Network for Multi-View Clustering

被引:0
|
作者
Wang, Jing [1 ]
Feng, Songhe [1 ]
Lyu, Gengyu [2 ]
Yuan, Jiazheng [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Big Data & Artificial Intelligence Transp, Beijing, Peoples R China
[2] Beijing Univ Technol, Engn Res Ctr Intelligence Percept & Autonomous Co, Minist Educ, Beijing, Peoples R China
[3] Beijing Open Univ, Coll Sci & Technol, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Multi-view Graph Clustering (DMGC) aims to partition instances into different groups using the graph information extracted from multi-view data. The mainstream framework of DMGC methods applies graph neural networks to embed structure information into the view-specific representations and fuse them for the consensus representation. However, on one hand, we find that the graph learned in advance is not ideal for clustering as it is constructed by original multi-view data and localized connecting. On the other hand, most existing methods learn the consensus representation in a late fusion manner, which fails to propagate the structure relations across multiple views. Inspired by the observations, we propose a Structure-adaptive Unified gRaph nEural network for multi-view clusteRing (SURER), which can jointly learn a heterogeneous multi-view unified graph and robust graph neural networks for multi-view clustering. Specifically, we first design a graph structure learning module to refine the original view-specific attribute graphs, which removes false edges and discovers the potential connection. According to the view-specific refined attribute graphs, we integrate them into a unified heterogeneous graph by linking the representations of the same sample from different views. Furthermore, we use the unified heterogeneous graph as the input of the graph neural network to learn the consensus representation for each instance, effectively integrating complementary information from various views. Extensive experiments on diverse datasets demonstrate the superior effectiveness of our method compared to other state-of-the-art approaches.
引用
收藏
页码:15520 / 15527
页数:8
相关论文
共 50 条
  • [31] Adaptive partial graph learning and fusion for incomplete multi-view clustering
    Zheng, Xiao
    Liu, Xinwang
    Chen, Jiajia
    Zhu, En
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (01) : 991 - 1009
  • [32] Multi-view subspace clustering with adaptive locally consistent graph regularization
    Liu, Xiaolan
    Pan, Gan
    Xie, Mengying
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15397 - 15412
  • [33] Multi-view subspace clustering with adaptive locally consistent graph regularization
    Xiaolan Liu
    Gan Pan
    Mengying Xie
    Neural Computing and Applications, 2021, 33 : 15397 - 15412
  • [34] Scalable and Structural Multi-View Graph Clustering With Adaptive Anchor Fusion
    Wang, Siwei
    Liu, Xinwang
    Liu, Suyuan
    Tu, Wenxuan
    Zhu, En
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4627 - 4639
  • [35] Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter
    Wei, Lai
    Song, Shanshan
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 776 - 784
  • [36] Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
    Zhang, Pei
    Wang, Siwei
    Hu, Jingtao
    Cheng, Zhen
    Guo, Xifeng
    Zhu, En
    Cai, Zhiping
    SENSORS, 2020, 20 (20) : 1 - 18
  • [37] Clustering-Induced Adaptive Structure Enhancing Network for Incomplete Multi-View Data
    Xue, Zhe
    Du, Junping
    Zheng, Changwei
    Song, Jie
    Ren, Wenqi
    Liang, Meiyu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3235 - 3241
  • [38] Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis
    Liu, Ye
    He, Lifang
    Cao, Bokai
    Yu, Philip S.
    Ragin, Ann B.
    Leow, Alex D.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 117 - 124
  • [39] Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph Clustering
    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
    不详
    不详
    VA, United States
    不详
    不详
    PA, United States
    arXiv,
  • [40] Unpaired Multi-View Graph Clustering With Cross-View Structure Matching
    Wen, Yi
    Wang, Siwei
    Liao, Qing
    Liang, Weixuan
    Liang, Ke
    Wan, Xinhang
    Liu, Xinwang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15