Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering

被引:0
|
作者
Wu, Jianlong [1 ,2 ,3 ]
Xie, Xingxu [3 ]
Nie, Liqiang [1 ]
Lin, Zhouchen [3 ,4 ]
Zha, Hongbin [3 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan, Peoples R China
[2] Zhejiang Lab, Hangzhou, Peoples R China
[3] Peking Univ, Sch EECS, Key Lab Machine Percept MOE, Beijing, Peoples R China
[4] Samsung Res China Beijing SRC B, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering aims to take advantage of multiple views information to improve the performance of clustering. Many existing methods compute the affinity matrix by low-rank representation (LRR) and pairwise investigate the relationship between views. However, LRR suffers from the high computational cost in self-representation optimization. Besides, compared with pairwise views, tensor form of all views' representation is more suitable for capturing the high-order correlations among all views. Towards these two issues, in this paper, we propose the unified graph and low-rank tensor learning (UGLTL) for multi-view clustering. Specifically, on the one hand, we learn the view-specific affinity matrix based on projected graph learning. On the other hand, we reorganize the affinity matrices into tensor form and learn its intrinsic tensor based on low-rank tensor approximation. Finally, we unify these two terms together and jointly learn the optimal projection matrices, affinity matrices and intrinsic low-rank tensor. We also propose an efficient algorithm to iteratively optimize the proposed model. To evaluate the performance of the proposed method, we conduct extensive experiments on multiple benchmarks across different scenarios and sizes. Compared with the state-of-the-art approaches, our method achieves much better performance.
引用
收藏
页码:6388 / 6395
页数:8
相关论文
共 50 条
  • [1] Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Peng, Chong
    Lu, Guangming
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 92 - 104
  • [2] Low-rank Tensor Graph Learning Based Incomplete Multi-view Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1433 - 1445
  • [3] Unified Low-Rank Tensor Learning and Spectral Embedding for Multi-View Subspace Clustering
    Fu, Lele
    Chen, Zhaoliang
    Chen, Yongyong
    Wang, Shiping
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4972 - 4985
  • [4] Unbalanced incomplete multi-view clustering based on low-rank tensor graph learning
    Ji, Guangyan
    Lu, Gui-Fu
    Cai, Bing
    Du, Yangfan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [5] Constrained Low-Rank Tensor Learning for Multi-View Subspace Clustering
    Zhang, Tao
    Wang, Bo
    Zhang, Huanhuan
    Zhao, Yu
    [J]. 2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 49 - 54
  • [6] Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering
    Wu, Tingting
    Feng, Songhe
    Yuan, Jiazheng
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15952 - 15960
  • [7] Enhanced tensor low-rank representation learning for multi-view clustering
    Xie, Deyan
    Gao, Quanxue
    Yang, Ming
    [J]. NEURAL NETWORKS, 2023, 161 : 93 - 104
  • [8] Low-Rank Tensor Based Proximity Learning for Multi-View Clustering
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5076 - 5090
  • [9] Tensor-based Low-rank and Graph Regularized Representation Learning for Multi-view Clustering
    Wang, Haiyan
    Han, Guoqiang
    Zhang, Bin
    Hu, Yu
    Peng, Hong
    Han, Chu
    Cai, Hongmin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 821 - 826
  • [10] Multi-view Clustering with Latent Low-rank Proxy Graph Learning
    Jian Dai
    Zhenwen Ren
    Yunzhi Luo
    Hong Song
    Jian Yang
    [J]. Cognitive Computation, 2021, 13 : 1049 - 1060