Higher-order rogue waves due to a coupled cubic-quintic nonlinear Schrödinger equations in a nonlinear electrical network

被引:1
|
作者
Djelah, Gabriel [1 ]
Ndzana, Fabien I. I. [1 ,2 ,3 ]
Abdoulkary, Saidou [1 ,4 ]
English, L. Q. [5 ]
Mohamadou, Alidou [1 ,2 ,6 ,7 ]
机构
[1] Univ Maroua, Fac Sci, Complex Syst, POB 814, Maroua, Cameroon
[2] Univ Yaounde I, Int Ctr Complex Syst, Fac Sci, POB 812, Yaounde, Cameroon
[3] Ecole Normale Super Enseignement Tech Ebolowa, BP 886, Ebolowa, Cameroon
[4] Ecole Natl Super Mines & Ind Petrolieres, Dept SF, POB 08, Kaele, Cameroon
[5] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[6] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[7] Abdus Salam Int Ctr Theoret Phys, POB 586,Str Costiera II, I-34014 Trieste, Italy
关键词
Nonlinear transmission lines; Coupled cubic-quintic nonlinear Schr & ouml; dinger; equations; Generalized Darboux transformation; Rogue waves; SCHRODINGER-EQUATIONS; TRANSMISSION-LINES; INTEGRABILITY;
D O I
10.1016/j.physleta.2024.129666
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear dispersive electrical transmission network, with a CMOS varactor. Using the reductive perturbation method in semi-discrete limit, we show that the dynamics of modulated waves is governed by a pair of coupled cubic-quintic nonlinear Schr & ouml;dinger equations. Through the generalized Darboux transformation, we construct high order rogue waves solutions including pairs of first-, second- and third-order rational solutions. Our results show that the wavenumber influences the amplitude and phase of waves. We numerically show that the first and second order rogue waves are more stable than the third ones and in good agreement with the analytical results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schr?dinger Equations
    徐涛
    陳偉康
    陈勇
    Communications in Theoretical Physics, 2018, 70 (08) : 153 - 160
  • [2] Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schrodinger Equations
    Xu, Tao
    Chan, Wai-Hong
    Chen, Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (02) : 153 - 160
  • [3] Coupled cubic-quintic nonlinear Schrödinger equation: novel bright–dark rogue waves and dynamics
    Xue-Wei Yan
    Jiefang Zhang
    Nonlinear Dynamics, 2020, 100 : 3733 - 3743
  • [4] Interactions of breather and rogue wave on the periodic background for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
    Lou, Yu
    NONLINEAR DYNAMICS, 2025, : 15347 - 15362
  • [5] Dynamical behavior of the higher-order cubic-quintic nonlinear Schrödinger equation with stability analysis
    Younas, Tayyaba
    Ahmad, Jamshad
    JOURNAL OF OPTICS-INDIA, 2024,
  • [6] Higher-Order Localized Waves in Coupled Nonlinear Schrdinger Equations
    王鑫
    杨波
    陈勇
    杨云青
    Chinese Physics Letters, 2014, 31 (09) : 5 - 8
  • [7] Localized waves of the coupled cubic–quintic nonlinear Schrdinger equations in nonlinear optics
    徐涛
    陈勇
    林机
    Chinese Physics B, 2017, 26 (12) : 84 - 97
  • [8] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrdinger Equation
    王晓丽
    张卫国
    翟保国
    张海强
    CommunicationsinTheoreticalPhysics, 2012, 58 (10) : 531 - 538
  • [9] Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic-quintic nonlinear Schrödinger equations with self-steepening
    Manigandan, M.
    Manikandan, K.
    Muniyappan, A.
    Jakeer, S.
    Sirisubtawee, S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [10] Mixed Higher-Order Rogue Waves and Solitons for the Coupled Modified Nonlinear Schrödinger Equation
    Tao Xu
    Guoliang He
    Ming Wang
    Yanqing Wang
    Qualitative Theory of Dynamical Systems, 2023, 22