Using Deep Learning to Recognize Fake Faces

被引:0
|
作者
Atwan, Jaffar [1 ]
Wedyan, Mohammad [2 ]
Albashish, Dheeb [1 ]
Aljaafrah, Elaf
Alturki, Ryan [1 ,3 ]
Alshawi, Bandar [4 ]
机构
[1] Al Balqa Appl Univ, Prince Abdullah bin Ghazi Fac Informat & Commun Te, Salt, Jordan
[2] Yarmouk Univ, Fac Informat Technol & Comp Sci, Dept Comp Sci, Irbid 21163, Jordan
[3] Umm Al Qura Univ, Coll Comp, Dept Software Engn, Mecca, Saudi Arabia
[4] Umm Al Qura Univ, Coll Comp, Dept Comp & Network Engn, Mecca, Saudi Arabia
关键词
Deep learning; machine learning; deepfake; convo- lutional neural network; global average pooling;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent times, many fake faces have been created using deep learning and machine learning. Most fake faces made with deep learning are referred to as "deepfake photos." Our study's primary goal is to propose a useful framework for recognizing deep -fake photos using deep learning and transformative learning techniques. This paper proposed convolutional neural network (CNN) models based on deep transfer learning methodologies in which the designed classifier using global average pooling (GAP), dropout, and a dense layer with two neurons that use SoftMax are substituted for the final fully connected layer in the pretrained models. DenseNet201, the suggested framework, produced the best accuracy of 86.85% for both the deepfake and real picture datasets, while MobileNet produced a lower accuracy of 82.78%. The obtained experimental results showed that the proposed method outperformed other stateof-the-art fake picture discriminators in terms of performance. The proposed architecture helps cybersecurity specialists fight deepfake-related cybercrimes.
引用
收藏
页码:1144 / 1155
页数:12
相关论文
共 50 条
  • [31] Learning to recognize faces through noise: An fMRI study
    Zhou, K
    Liu, J
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2005, : 114 - 114
  • [32] Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques
    Alameri, Saeed Amer
    Mohd, Masnizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 101 - 106
  • [33] Fake news detection on Pakistani news using machine learning and deep learning
    Kishwar, Azka
    Zafar, Adeel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [34] The surprisingly high human efficiency at learning to recognize faces
    Peterson, Matthew F.
    Abbey, Craig K.
    Eckstein, Miguel P.
    VISION RESEARCH, 2009, 49 (03) : 301 - 314
  • [35] Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method
    Machova, Kristina
    Mach, Marian
    Balara, Viliam
    SENSORS, 2024, 24 (11)
  • [36] Fake Job Detection and Analysis Using Machine Learning and Deep Learning Algorithms
    Anita, C. S.
    Nagarajan, P.
    Sairam, G. Aditya
    Ganesh, P.
    Deepakkumar, G.
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 642 - 650
  • [37] Deep Learning Based One-Class Detection System for Fake Faces Generated by GAN Network
    Li, Shengyin
    Dutta, Vibekananda
    He, Xin
    Matsumaru, Takafumi
    SENSORS, 2022, 22 (20)
  • [38] Deep fake detection and classification using error-level analysis and deep learning
    Rimsha Rafique
    Rahma Gantassi
    Rashid Amin
    Jaroslav Frnda
    Aida Mustapha
    Asma Hassan Alshehri
    Scientific Reports, 13
  • [39] Shallow- and Deep-fake Image Manipulation Localization Using Deep Learning
    Zhang, Junbin
    Tohidypour, Hamidreza
    Wang, Yixiao
    Nasiopoulos, Panos
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 468 - 472
  • [40] Deep Ensemble Fake News Detection Model Using Sequential Deep Learning Technique
    Ali, Abdullah Marish
    Ghaleb, Fuad A.
    Al-Rimy, Bander Ali Saleh
    Alsolami, Fawaz Jaber
    Khan, Asif Irshad
    SENSORS, 2022, 22 (18)