Using Deep Learning to Recognize Fake Faces

被引:0
|
作者
Atwan, Jaffar [1 ]
Wedyan, Mohammad [2 ]
Albashish, Dheeb [1 ]
Aljaafrah, Elaf
Alturki, Ryan [1 ,3 ]
Alshawi, Bandar [4 ]
机构
[1] Al Balqa Appl Univ, Prince Abdullah bin Ghazi Fac Informat & Commun Te, Salt, Jordan
[2] Yarmouk Univ, Fac Informat Technol & Comp Sci, Dept Comp Sci, Irbid 21163, Jordan
[3] Umm Al Qura Univ, Coll Comp, Dept Software Engn, Mecca, Saudi Arabia
[4] Umm Al Qura Univ, Coll Comp, Dept Comp & Network Engn, Mecca, Saudi Arabia
关键词
Deep learning; machine learning; deepfake; convo- lutional neural network; global average pooling;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent times, many fake faces have been created using deep learning and machine learning. Most fake faces made with deep learning are referred to as "deepfake photos." Our study's primary goal is to propose a useful framework for recognizing deep -fake photos using deep learning and transformative learning techniques. This paper proposed convolutional neural network (CNN) models based on deep transfer learning methodologies in which the designed classifier using global average pooling (GAP), dropout, and a dense layer with two neurons that use SoftMax are substituted for the final fully connected layer in the pretrained models. DenseNet201, the suggested framework, produced the best accuracy of 86.85% for both the deepfake and real picture datasets, while MobileNet produced a lower accuracy of 82.78%. The obtained experimental results showed that the proposed method outperformed other stateof-the-art fake picture discriminators in terms of performance. The proposed architecture helps cybersecurity specialists fight deepfake-related cybercrimes.
引用
收藏
页码:1144 / 1155
页数:12
相关论文
共 50 条
  • [21] Detecting Fake News using Machine Learning and Deep Learning Algorithms
    Abdullah-All-Tanvir
    Mahir, Ehesas Mia
    Akhter, Saima
    Huq, Mohammad Rezwanul
    2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 103 - 107
  • [22] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [23] An efficient fuzzy deep learning approach to recognize 2D faces using FADF and ResNet-164 architecture
    Seethalakshmi, K.
    Valli, S.
    Veeramakali, T.
    Kanimozhi, K., V
    Hemalatha, S.
    Sambath, M.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3241 - 3250
  • [24] Fake News Detection Using Hybrid Deep Learning Method
    Yadav A.K.
    Kumar S.
    Kumar D.
    Kumar L.
    Kumar K.
    Maurya S.K.
    Kumar M.
    Yadav D.
    SN Computer Science, 4 (6)
  • [25] Fake Video News Detection Using Deep Learning Algorithm
    Pimple, Kanchan M.
    Solanke, Ravindra R.
    Likhitkar, Praveen P.
    Pande, Sagar
    PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022, 2023, 479 : 851 - 857
  • [26] Deep Fake Video Detection Using Transfer Learning Approach
    Suratkar, Shraddha
    Kazi, Faruk
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 9727 - 9737
  • [27] Approach for Detecting Arabic Fake News using Deep Learning
    Shaker, Khalid
    Alqudsi, Arwa
    Iraqi Journal for Computer Science and Mathematics, 2024, 5 (03): : 779 - 789
  • [28] Deep Fake Video Detection Using Transfer Learning Approach
    Shraddha Suratkar
    Faruk Kazi
    Arabian Journal for Science and Engineering, 2023, 48 : 9727 - 9737
  • [29] The Detection of Fake News in Arabic Tweets Using Deep Learning
    Alyoubi, Shatha
    Kalkatawi, Manal
    Abukhodair, Felwa
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [30] Fake Face Generator: Generating Fake Human Faces using GAN
    Mahiuddin, Md.
    Khaliluzzaman, Md.
    Chowdhury, Md. Shahnur Azad
    Arefin, Muhammed Nazmul
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 160 - 165