Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method

被引:0
|
作者
Machova, Kristina [1 ]
Mach, Marian [1 ]
Balara, Viliam [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Letna 9, Kosice 04200, Slovakia
关键词
federated learning; deep learning; fake news detection; natural language processing;
D O I
10.3390/s24113590
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article explores the possibilities for federated learning with a deep learning method as a basic approach to train detection models for fake news recognition. Federated learning is the key issue in this research because this kind of learning makes machine learning more secure by training models on decentralized data at decentralized places, for example, at different IoT edges. The data are not transformed between decentralized places, which means that personally identifiable data are not shared. This could increase the security of data from sensors in intelligent houses and medical devices or data from various resources in online spaces. Each station edge could train a model separately on data obtained from its sensors and on data extracted from different sources. Consequently, the models trained on local data on local clients are aggregated at the central ending point. We have designed three different architectures for deep learning as a basis for use within federated learning. The detection models were based on embeddings, CNNs (convolutional neural networks), and LSTM (long short-term memory). The best results were achieved using more LSTM layers (F1 = 0.92). On the other hand, all three architectures achieved similar results. We also analyzed results obtained using federated learning and without it. As a result of the analysis, it was found that the use of federated learning, in which data were decomposed and divided into smaller local datasets, does not significantly reduce the accuracy of the models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Fake News Detection Using Hybrid Deep Learning Method
    Yadav A.K.
    Kumar S.
    Kumar D.
    Kumar L.
    Kumar K.
    Maurya S.K.
    Kumar M.
    Yadav D.
    SN Computer Science, 4 (6)
  • [2] Fake News Detection Using Deep Learning
    Lee, Dong-Ho
    Kim, Yu-Ri
    Kim, Hyeong-Jun
    Park, Seung-Myun
    Yang, Yu-Jun
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2019, 15 (05): : 1119 - 1130
  • [3] Fake News Detection using Deep Learning
    Kong, Sheng How
    Tan, Li Mei
    Gan, Keng Hoon
    Samsudin, Nur Hana
    IEEE 10TH SYMPOSIUM ON COMPUTER APPLICATIONS AND INDUSTRIAL ELECTRONICS (ISCAIE 2020), 2020, : 102 - 107
  • [4] Fake news detection on Pakistani news using machine learning and deep learning
    Kishwar, Azka
    Zafar, Adeel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [5] Arabic Fake News Detection Using Deep Learning
    Othman, Nermin Abdelhakim
    Elzanfaly, Doaa S.
    Elhawary, Mostafa Mahmoud M.
    IEEE ACCESS, 2024, 12 : 122363 - 122376
  • [6] Arabic Fake News Detection Using Deep Learning
    Fouad, Khaled M.
    Sabbeh, Sahar F.
    Medhat, Walaa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 3647 - 3665
  • [7] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [8] Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques
    Alameri, Saeed Amer
    Mohd, Masnizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 101 - 106
  • [9] Fake Video News Detection Using Deep Learning Algorithm
    Pimple, Kanchan M.
    Solanke, Ravindra R.
    Likhitkar, Praveen P.
    Pande, Sagar
    PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022, 2023, 479 : 851 - 857
  • [10] The Detection of Fake News in Arabic Tweets Using Deep Learning
    Alyoubi, Shatha
    Kalkatawi, Manal
    Abukhodair, Felwa
    APPLIED SCIENCES-BASEL, 2023, 13 (14):