Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method

被引:0
|
作者
Machova, Kristina [1 ]
Mach, Marian [1 ]
Balara, Viliam [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Letna 9, Kosice 04200, Slovakia
关键词
federated learning; deep learning; fake news detection; natural language processing;
D O I
10.3390/s24113590
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article explores the possibilities for federated learning with a deep learning method as a basic approach to train detection models for fake news recognition. Federated learning is the key issue in this research because this kind of learning makes machine learning more secure by training models on decentralized data at decentralized places, for example, at different IoT edges. The data are not transformed between decentralized places, which means that personally identifiable data are not shared. This could increase the security of data from sensors in intelligent houses and medical devices or data from various resources in online spaces. Each station edge could train a model separately on data obtained from its sensors and on data extracted from different sources. Consequently, the models trained on local data on local clients are aggregated at the central ending point. We have designed three different architectures for deep learning as a basis for use within federated learning. The detection models were based on embeddings, CNNs (convolutional neural networks), and LSTM (long short-term memory). The best results were achieved using more LSTM layers (F1 = 0.92). On the other hand, all three architectures achieved similar results. We also analyzed results obtained using federated learning and without it. As a result of the analysis, it was found that the use of federated learning, in which data were decomposed and divided into smaller local datasets, does not significantly reduce the accuracy of the models.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] A Deep Learning Approach to Fake News Detection
    Masciari, Elio
    Moscato, Vincenzo
    Picariello, Antonio
    Sperli, Giancarlo
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 113 - 122
  • [12] Deep learning methods for Fake News detection
    Kresnakova, Viera Maslej
    Sarnovsky, Martin
    Butka, Peter
    IEEE JOINT 19TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 7TH INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCES AND ROBOTICS (CINTI-MACRO 2019), 2019, : 143 - 148
  • [13] Fake news detection using deep learning models: A novel approach
    Kumar, Sachin
    Asthana, Rohan
    Upadhyay, Shashwat
    Upreti, Nidhi
    Akbar, Mohammad
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2020, 31 (02)
  • [14] Fake news detection in Slovak language using deep learning techniques
    Ivancova, Klaudia
    Sarnovsky, Martin
    Maslej-Kresnakova, Viera
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 255 - 259
  • [15] Fake News Detection Using Deep Learning and Natural Language Processing
    Matheven, Anand
    Venkata, Burra
    Kumar, Durga
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 11 - 14
  • [16] Fake News Detection Using Deep Learning: A Systematic Literature Review
    Alnabhan, Mohammad Q.
    Branco, Paula
    IEEE ACCESS, 2024, 12 : 114435 - 114459
  • [17] Deep learning for fake news detection: A comprehensive survey
    Hu, Linmei
    Wei, Siqi
    Zhao, Ziwang
    Wu, Bin
    AI Open, 2022, 3 : 133 - 155
  • [18] Fake Detect: A Deep Learning Ensemble Model for Fake News Detection
    Aslam, Nida
    Ullah Khan, Irfan
    Alotaibi, Farah Salem
    Aldaej, Lama Abdulaziz
    Aldubaikil, Asma Khaled
    COMPLEXITY, 2021, 2021
  • [19] Deep Learning for Fake News Detection: Theories and Models
    Huang, Lu
    ACM International Conference Proceeding Series, 2022, : 1322 - 1326
  • [20] A Comprehensive Review on Fake News Detection With Deep Learning
    Mridha, M. F.
    Keya, Ashfia Jannat
    Hamid, Md. Abdul
    Monowar, Muhammad Mostafa
    Rahman, Md. Saifur
    IEEE ACCESS, 2021, 9 : 156151 - 156170