A Deep Learning Approach to Fake News Detection

被引:6
|
作者
Masciari, Elio [1 ]
Moscato, Vincenzo [1 ]
Picariello, Antonio [1 ]
Sperli, Giancarlo [1 ]
机构
[1] Univ Federico II Naples, Naples, Italy
关键词
D O I
10.1007/978-3-030-59491-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The uncontrolled growth of fake news creation and dissemination we observed in recent years causes continuous threats to democracy, justice, and public trust. This problem has significantly driven the effort of both academia and industries for developing more accurate fake news detection strategies. Early detection of fake news is crucial, however the availability of information about news propagation is limited. Moreover, it has been shown that people tend to believe more fake news due to their features [11]. In this paper, we present our framework for fake news detection and we discuss in detail a solution based on deep learning methodologies we implemented by leveraging Google Bert features. Our experiments conducted on two well-known and widely used real-world datasets suggest that our method can outperform the state-of-the-art approaches and allows fake news accurate detection, even in the case of limited content information.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] A deep learning approach for automatic detection of fake news
    Saikh, Tanik
    De, Arkadipta
    Ekbal, Asif
    Bhattacharyya, Pushpak
    [J]. arXiv, 2020,
  • [2] A Deep Transfer Learning Approach for Fake News Detection
    Saikh, Tanik
    Haripriya, B.
    Ekbal, Asif
    Bhattacharyya, Pushpak
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] Fake news detection using deep learning models: A novel approach
    Kumar, Sachin
    Asthana, Rohan
    Upadhyay, Shashwat
    Upreti, Nidhi
    Akbar, Mohammad
    [J]. TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2020, 31 (02)
  • [4] Fake News Detection Using Deep Learning
    Lee, Dong-Ho
    Kim, Yu-Ri
    Kim, Hyeong-Jun
    Park, Seung-Myun
    Yang, Yu-Jun
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2019, 15 (05): : 1119 - 1130
  • [5] Fake News Detection using Deep Learning
    Kong, Sheng How
    Tan, Li Mei
    Gan, Keng Hoon
    Samsudin, Nur Hana
    [J]. IEEE 10TH SYMPOSIUM ON COMPUTER APPLICATIONS AND INDUSTRIAL ELECTRONICS (ISCAIE 2020), 2020, : 102 - 107
  • [6] Deep learning methods for Fake News detection
    Kresnakova, Viera Maslej
    Sarnovsky, Martin
    Butka, Peter
    [J]. IEEE JOINT 19TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 7TH INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCES AND ROBOTICS (CINTI-MACRO 2019), 2019, : 143 - 148
  • [7] Enhancing Fake News Detection with Word Embedding: A Machine Learning and Deep Learning Approach
    Al-Tarawneh, Mutaz A. B.
    Al-irr, Omar
    Al-Maaitah, Khaled S.
    Kanj, Hassan
    Aly, Wael Hosny Fouad
    [J]. COMPUTERS, 2024, 13 (09)
  • [8] Fake News Detection: An Ensemble Learning Approach
    Agarwal, Arush
    Dixit, Akhil
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1178 - 1183
  • [9] Fake Detect: A Deep Learning Ensemble Model for Fake News Detection
    Aslam, Nida
    Ullah Khan, Irfan
    Alotaibi, Farah Salem
    Aldaej, Lama Abdulaziz
    Aldubaikil, Asma Khaled
    [J]. COMPLEXITY, 2021, 2021
  • [10] A Machine Learning approach for Fake News Detection
    Bisen, Wani H.
    Paunikar, Anuragini
    Thakur, Bharat
    Garg, Anushka
    Nangliya, Khushbu
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (05): : 1050 - 1056