Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method

被引:0
|
作者
Machova, Kristina [1 ]
Mach, Marian [1 ]
Balara, Viliam [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Letna 9, Kosice 04200, Slovakia
关键词
federated learning; deep learning; fake news detection; natural language processing;
D O I
10.3390/s24113590
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article explores the possibilities for federated learning with a deep learning method as a basic approach to train detection models for fake news recognition. Federated learning is the key issue in this research because this kind of learning makes machine learning more secure by training models on decentralized data at decentralized places, for example, at different IoT edges. The data are not transformed between decentralized places, which means that personally identifiable data are not shared. This could increase the security of data from sensors in intelligent houses and medical devices or data from various resources in online spaces. Each station edge could train a model separately on data obtained from its sensors and on data extracted from different sources. Consequently, the models trained on local data on local clients are aggregated at the central ending point. We have designed three different architectures for deep learning as a basis for use within federated learning. The detection models were based on embeddings, CNNs (convolutional neural networks), and LSTM (long short-term memory). The best results were achieved using more LSTM layers (F1 = 0.92). On the other hand, all three architectures achieved similar results. We also analyzed results obtained using federated learning and without it. As a result of the analysis, it was found that the use of federated learning, in which data were decomposed and divided into smaller local datasets, does not significantly reduce the accuracy of the models.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Fake News Detection Using Ensemble Machine Learning
    Mohale, Potsane
    Leung, Wai Sze
    PROCEEDINGS OF THE 18TH EUROPEAN CONFERENCE ON CYBER WARFARE AND SECURITY (ECCWS 2019), 2019, : 777 - 784
  • [42] Fake Image Detection Using Deep Learning
    Khudeyer R.S.
    Al-Moosawi N.M.
    Informatica (Slovenia), 2023, 47 (07): : 115 - 120
  • [43] Enhancing Fake News Detection with Word Embedding: A Machine Learning and Deep Learning Approach
    Al-Tarawneh, Mutaz A. B.
    Al-irr, Omar
    Al-Maaitah, Khaled S.
    Kanj, Hassan
    Aly, Wael Hosny Fouad
    COMPUTERS, 2024, 13 (09)
  • [44] Multilingual deep learning framework for fake news detection using capsule neural network
    Mohawesh, Rami
    Maqsood, Sumbal
    Althebyan, Qutaibah
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 60 (03) : 655 - 671
  • [45] Detection of fake news using deep learning CNN-RNN based methods
    Sastrawan, I. Kadek
    Bayupati, I. P. A.
    Arsa, Dewa Made Sri
    ICT EXPRESS, 2022, 8 (03): : 396 - 408
  • [46] Multilingual deep learning framework for fake news detection using capsule neural network
    Rami Mohawesh
    Sumbal Maqsood
    Qutaibah Althebyan
    Journal of Intelligent Information Systems, 2023, 60 : 655 - 671
  • [47] Fake News Stance Detection Using Deep Learning Architecture (CNN-LSTM)
    Umer, Muhammad
    Imtiaz, Zainab
    Ullah, Saleem
    Mehmood, Arif
    Choi, Gyu Sang
    On, Byung-Won
    IEEE ACCESS, 2020, 8 : 156695 - 156706
  • [48] Approach for Detecting Arabic Fake News using Deep Learning
    Shaker, Khalid
    Alqudsi, Arwa
    Iraqi Journal for Computer Science and Mathematics, 2024, 5 (03): : 779 - 789
  • [49] Supervised Learning for Fake News Detection
    Reis, Julio C. S.
    Correia, Andre
    Murai, Fabricio
    Veloso, Adriano
    Benevenuto, Fabricio
    IEEE INTELLIGENT SYSTEMS, 2019, 34 (02) : 76 - 81
  • [50] Hybrid fake news detection technique with genetic search and deep learning
    Okunoye, Olusoji B.
    Ibor, Ayei E.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103