Cyclicity of slow-fast cycles with two canard mechanisms

被引:0
|
作者
Yao, Jinhui [1 ]
Huang, Jicai [1 ]
Huzak, Renato [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Hasselt Univ, Dept Math & Stat, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
基金
中国国家自然科学基金;
关键词
MODIFIED LESLIE-GOWER; SINGULAR PERTURBATION-THEORY; PREDATOR-PREY SYSTEMS; SMOOTHNESS; MANIFOLDS; STABILITY; DELAY; MODEL;
D O I
10.1063/5.0201887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the cyclicity of some degenerate slow-fast cycles with two canard mechanisms in planar slow-fast systems. One canard mechanism originates from a slow-fast Hopf point and the other from a point of self-intersection where the so-called entry-exit relation can be used. By studying the difference map, we show that the cyclicity of such slow-fast cycles is at most two (the associated slow divergence integral is nonzero or vanishes). As an example, we apply this result to the modified Holling-Tanner model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Cyclicity of common slow-fast cycles
    De Maesschalck, P.
    Dumortier, F.
    Roussarie, R.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 22 (3-4): : 165 - 206
  • [2] DUCK FARMING ON THE TWO-TORUS: MULTIPLE CANARD CYCLES IN GENERIC SLOW-FAST SYSTEMS
    Schurov, Ilya
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 1289 - 1298
  • [3] PRIMARY BIRTH OF CANARD CYCLES IN SLOW-FAST CODIMENSION 3 ELLIPTIC BIFURCATIONS
    Huzak, Renato
    De Maesschalck, Peter
    Dumortier, Freddy
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2641 - 2673
  • [4] Saddle-node canard cycles in slow-fast planar piecewise linear differential systems
    Carmona, V.
    Fernandez-Garcia, S.
    Teruel, A. E.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2024, 52
  • [5] FINITE CYCLICITY OF SLOW-FAST DARBOUX SYSTEMS WITH A TWO-SADDLE LOOP
    Bobienski, Marcin
    Gavrilov, Lubomir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4205 - 4219
  • [6] Numerical continuation of canard orbits in slow-fast dynamical systems
    Desroches, M.
    Krauskopf, B.
    Osinga, H. M.
    NONLINEARITY, 2010, 23 (03) : 739 - 765
  • [7] Box Dimension and Cyclicity of Canard Cycles
    Huzak, Renato
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (02) : 475 - 493
  • [8] Box Dimension and Cyclicity of Canard Cycles
    Renato Huzak
    Qualitative Theory of Dynamical Systems, 2018, 17 : 475 - 493
  • [9] CANARD CYCLE IN A SLOW-FAST BITROPHIC FOOD CHAIN MODEL IN CHEMOSTAT
    Li, Jun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1360 - 1373
  • [10] Canard phenomenon in a slow-fast modified Leslie-Gower model
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    Yafia, R.
    MATHEMATICAL BIOSCIENCES, 2018, 295 : 48 - 54