Satisfiability Modulo Exponential Integer Arithmetic

被引:0
|
作者
Frohn, Florian [1 ]
Giesl, Juergen [1 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
来源
关键词
ACCELERATION;
D O I
10.1007/978-3-031-63498-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
SMT solvers use sophisticated techniques for polynomial (linear or non-linear) integer arithmetic. In contrast, non-polynomial integer arithmetic has mostly been neglected so far. However, in the context of program verification, polynomials are often insufficient to capture the behavior of the analyzed system without resorting to approximations. In the last years, incremental linearization has been applied successfully to satisfiability modulo real arithmetic with transcendental functions. We adapt this approach to an extension of polynomial integer arithmetic with exponential functions. Here, the key challenge is to compute suitable lemmas that eliminate the current model from the search space if it violates the semantics of exponentiation. An empirical evaluation of our implementation shows that our approach is highly effective in practice.
引用
收藏
页码:344 / 365
页数:22
相关论文
共 50 条
  • [21] Satisfiability Modulo User Propagators
    Fazekas, Katalin
    Niemetz, Aina
    Preiner, Mathias
    Kirchweger, Markus
    Szeider, Stefan
    Biere, Armin
    Journal of Artificial Intelligence Research, 2024, 81 : 989 - 1017
  • [22] Satisfiability Modulo Finite Fields
    Ozdemir, Alex
    Kremer, Gereon
    Tinelli, Cesare
    Barrett, Clark
    COMPUTER AIDED VERIFICATION, CAV 2023, PT II, 2023, 13965 : 163 - 186
  • [23] A Survey of Satisfiability Modulo Theory
    Monniaux, David
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2016, 2016, 9890 : 401 - 425
  • [24] Foundations of Satisfiability Modulo Theories
    Tinelli, Cesare
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2010, 6188 : 58 - 58
  • [25] An Experiment with Satisfiability Modulo SAT
    Hantao Zhang
    Journal of Automated Reasoning, 2016, 56 : 143 - 154
  • [26] Satisfiability and Synthesis Modulo Oracles
    Polgreen, Elizabeth
    Reynolds, Andrew
    Seshia, Sanjit A.
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2022, 2022, 13182 : 263 - 284
  • [27] Satisfiability Modulo Bounded Checking
    Cruanes, Simon
    AUTOMATED DEDUCTION - CADE 26, 2017, 10395 : 114 - 129
  • [28] Architectural support for long integer modulo arithmetic on RISC-based smart cards
    Grossschädl, J
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2003, 17 (02): : 135 - 146
  • [29] An Instantiation Scheme for Satisfiability Modulo Theories
    Echenim, Mnacho
    Peltier, Nicolas
    JOURNAL OF AUTOMATED REASONING, 2012, 48 (03) : 293 - 362
  • [30] Motion Planning with Satisfiability Modulo Theories
    Hung, William N. N.
    Song, Xiaoyu
    Tan, Jindong
    Li, Xiaojuan
    Zhang, Jie
    Wang, Rui
    Gao, Peng
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 113 - 118