Motion Planning with Satisfiability Modulo Theories

被引:0
|
作者
Hung, William N. N. [1 ]
Song, Xiaoyu [2 ]
Tan, Jindong [3 ]
Li, Xiaojuan [4 ]
Zhang, Jie [5 ]
Wang, Rui [4 ]
Gao, Peng [2 ]
机构
[1] Synopsys Inc, Mountain View, CA 94043 USA
[2] Portland State Univ, Portland, OR 97207 USA
[3] Univ Tennessee, Knoxville, TN USA
[4] Capital Normal Univ, Beijing Engn Res Ctr High Reliable Embedded Syst, Coll Informat Engn, Beijing 100048, Peoples R China
[5] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motion planning is an important problem with many applications in robotics. In this paper, we focus on motion planning with rectangular obstacles parallel to the X, Y or Z axis. We formulate motion planning using Satisfiability Modulo Theories (SMT) and use SMT solvers to find a feasible path from the source to the goal. Our formulation decompose the robotic path into N path segments where the two ends of each path segment can be constrained using difference logic. Our SMT approach will find a solution if and only if a feasible path exists for the given constraints. We present extensive experimental results to demonstrate the scalability of our approach.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [1] Planning for Hybrid Systems via Satisfiability Modulo Theories
    Cashmore, Michael
    Magazzeni, Daniele
    Zehtabi, Parisa
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 67 : 235 - 283
  • [2] Planning for hybrid systems via satisfiability modulo theories
    Cashmore M.
    Magazzeni D.
    Zehtabi P.
    Journal of Artificial Intelligence Research, 2020, 67 : 235 - 283
  • [3] Satisfiability modulo theories
    Barrett, Clark
    Sebastiani, Roberto
    Seshia, Sanjit A.
    Tinelli, Cesare
    Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) : 825 - 885
  • [4] From propositional satisfiability to satisfiability modulo theories
    Sheini, Hossein M.
    Sakallah, Karem A.
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2006, PROCEEDINGS, 2006, 4121 : 1 - 9
  • [5] Satisfiability Modulo Theories: An Appetizer
    de Moura, Leonardo
    Bjorner, Nikolaj
    FORMAL METHODS: FOUNDATIONS AND APPLICATIONS, 2009, 5902 : 23 - 36
  • [6] A framework for Satisfiability Modulo Theories
    Kroening, Daniel
    Strichman, Ofer
    FORMAL ASPECTS OF COMPUTING, 2009, 21 (05) : 485 - 494
  • [7] Challenges in satisfiability modulo theories
    Nieuwenhuis, Robert
    Oliveras, Albert
    Rodriguez-Carbonell, Enric
    Rubio, Albert
    TERM REWRITING AND APPLICATIONS, PROCEEDINGS, 2007, 4533 : 2 - +
  • [8] Satisfiability Modulo Theories and Assignments
    Bonacina, Maria Paola
    Graham-Lengrand, Stephane
    Shankar, Natarajan
    AUTOMATED DEDUCTION - CADE 26, 2017, 10395 : 42 - 59
  • [9] Foundations of Satisfiability Modulo Theories
    Tinelli, Cesare
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2010, 6188 : 58 - 58
  • [10] An Instantiation Scheme for Satisfiability Modulo Theories
    Echenim, Mnacho
    Peltier, Nicolas
    JOURNAL OF AUTOMATED REASONING, 2012, 48 (03) : 293 - 362