Motion Planning with Satisfiability Modulo Theories

被引:0
|
作者
Hung, William N. N. [1 ]
Song, Xiaoyu [2 ]
Tan, Jindong [3 ]
Li, Xiaojuan [4 ]
Zhang, Jie [5 ]
Wang, Rui [4 ]
Gao, Peng [2 ]
机构
[1] Synopsys Inc, Mountain View, CA 94043 USA
[2] Portland State Univ, Portland, OR 97207 USA
[3] Univ Tennessee, Knoxville, TN USA
[4] Capital Normal Univ, Beijing Engn Res Ctr High Reliable Embedded Syst, Coll Informat Engn, Beijing 100048, Peoples R China
[5] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motion planning is an important problem with many applications in robotics. In this paper, we focus on motion planning with rectangular obstacles parallel to the X, Y or Z axis. We formulate motion planning using Satisfiability Modulo Theories (SMT) and use SMT solvers to find a feasible path from the source to the goal. Our formulation decompose the robotic path into N path segments where the two ends of each path segment can be constrained using difference logic. Our SMT approach will find a solution if and only if a feasible path exists for the given constraints. We present extensive experimental results to demonstrate the scalability of our approach.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [21] Efficient interpolant generation in Satisfiability Modulo Theories
    Cimatti, Alessandro
    Griggio, Alberto
    Sebastiani, Roberto
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2008, 4963 : 397 - +
  • [22] Beyond boolean SAT: Satisfiability Modulo Theories
    Cimatti, Alessandro
    WODES' 08: PROCEEDINGS OF THE 9TH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS, 2008, : 68 - 73
  • [23] Grounding Neural Inference with Satisfiability Modulo Theories
    Wang, Zifan
    Vijayakumar, Saranya
    Lu, Kaiji
    Ganesh, Vijay
    Jha, Somesh
    Fredriskon, Matt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] Tender System Verification with Satisfiability Modulo Theories
    Davila, Rene
    Aldeco-Perez, Rocio
    Barcenas, Everardo
    2021 9TH INTERNATIONAL CONFERENCE IN SOFTWARE ENGINEERING RESEARCH AND INNOVATION (CONISOFT 2021), 2021, : 69 - 78
  • [25] Stochastic Local Search for Satisfiability Modulo Theories
    Froehlich, Andreas
    Biere, Armin
    Wintersteiger, Christoph M.
    Hamadi, Youssef
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1136 - 1143
  • [26] Sets with Cardinality Constraints in Satisfiability Modulo Theories
    Suter, Philippe
    Steiger, Robin
    Kuncak, Viktor
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, 2011, 6538 : 403 - 418
  • [27] Proof Checking Technology for Satisfiability Modulo Theories
    Stump, Aaron
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 228 : 121 - 133
  • [28] Automating Elevator Design with Satisfiability Modulo Theories
    Demarchi, Stefano
    Menapace, Marco
    Tacchella, Armando
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 26 - 33
  • [29] Satisfiability Modulo Theories: A Beginner's Tutorial
    Barrett, Clark
    Tinelli, Cesare
    Barbosa, Haniel
    Niemetz, Aina
    Preiner, Mathias
    Reynolds, Andrew
    Zohar, Yoni
    FORMAL METHODS, PT II, FM 2024, 2025, 14934 : 571 - 596
  • [30] Preface to special issue on satisfiability modulo theories
    Alberto Griggio
    Philipp Rümmer
    Formal Methods in System Design, 2017, 51 : 431 - 432