Existence of solutions for a class of fractional Kirchhoff variational inequality

被引:0
|
作者
Deng, Shenbing [1 ]
Luo, Wenshan [1 ]
Ledesma, Cesar E. Torres [2 ]
Quiroz, George W. Alama [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Nacl Trujillo, Dept Matemat, Inst Invest Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[3] Univ Privada Norte, Fac Estudios Gen, UPN Campus Virtual, Urb San Isidro 2da Etapa, Trujillo 13006, Peru
来源
基金
中国国家自然科学基金;
关键词
Fractional Kirchhoff variational inequality; variational methods; critical nonlinearity; MULTIPLE POSITIVE SOLUTIONS; CRITICAL-POINT THEORY; OBSTACLE PROBLEM; REGULARITY; STABILITY; EQUATION; DRIVEN;
D O I
10.4171/ZAA/1742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following fractional Kirchhoff variational inequality: (a + b[u] (2) ) integral(3)(R) ( - Delta) (s/2) u( - Delta)( s /2 )(v - u) dx + integral(R) 3 (1 + lambda V (x))u(v - u) dx >= integral(R)3 f (u)(v - u) dx V v E K , where s is an element of (( 3)/ (4) , 1) , lambda > 0 . In this paper, by applying penalization techniques from Bensoussan and Lions (1978) combined with mountain pass theorem, we show the existence and concentration behavior of positive solution to the cited variational inequality. This result extend some results established by Alves, Barros and Torres [J. Math. Anal. Appl. 494 (2021)] to the fractional case.
引用
下载
收藏
页码:149 / 168
页数:20
相关论文
共 50 条
  • [1] Corrigendum to "Existence of solutions for a class of fractional Kirchhoff variational inequality"(Vol 4, 2024, 511-512)
    Deng, Shengbing
    Luo, Wenshan
    Ledesma, Cesar E. Torres
    Quiroz, George W. Alama
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4): : 511 - 512
  • [2] Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem
    Sun, Gaofeng
    Teng, Kaimin
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 183 - 194
  • [3] Existence and Multiplicity of Solutions for a Class of Fractional Kirchhoff Type Problems with Variable Exponents
    Salah, M. Ben Mohamed
    Ghanmi, A.
    Kefi, K.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (02) : 253 - 268
  • [4] Existence of positive solutions for fractional Kirchhoff equation
    Wu, Ke
    Gu, Guangze
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [5] Existence of positive solutions for fractional Kirchhoff equation
    Ke Wu
    Guangze Gu
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [6] Existence of solutions for critical fractional Kirchhoff problems
    Zhang, Xia
    Zhang, Chao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1649 - 1665
  • [7] The Existence Problems of Solutions for a Class of Differential Variational-Hemivariational Inequality Problems
    Chang, Shih-Sen
    Salahuddin
    Ahmadini, A. A. H.
    Wang, Lin
    Wang, Gang
    MATHEMATICS, 2023, 11 (09)
  • [8] Existence of Ground State Solutions for a Class of Non-Autonomous Fractional Kirchhoff Equations
    Gu, Guangze
    Mu, Changyang
    Yang, Zhipeng
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [9] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Peng-fei LI
    Jun-hui XIE
    Dan MU
    Acta Mathematicae Applicatae Sinica, 2024, 40 (01) : 225 - 240
  • [10] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Peng-fei Li
    Jun-hui Xie
    Dan Mu
    Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 225 - 240